
1

Simulating Systems
not Benchmarks

HiPEAC Computing Systems Week 2012

Ali Saidi, Andreas Hansson

2

Welcome
§ Glad you’re here!

§ gem5 has been a multi-year effort
§  ARM is giving this tutorial today

§  Bit ARM-ISA focused
§  Borrowing material from previous gem5 tutorials

§  Many institutions and companies have contributed to the simulator
§  Encourage you to do the same

§ This tutorial is for you
§  Please ask questions when you have them

3

Goals and Timeline
§  Introduction to the gem5 simulator

§ 09:30 – 11:00
§ 11:00 – 11:30 -- Break
§ 11:30 – 13:00

4

Outline Part 1
§  Introduction

§  Why a system simulator?
§  Where it comes from?
§  What it can do?
§  High-level features

§  Basics
§  Compiling
§  Running

§ Using the simulator
§  Checkpoints
§  Sampling
§  Instrumenting
§  Results

§ Debugging
§  Trace
§  Debugging the simulator
§  Debugging the execution

5

Outline Part 2
§ Memory System

§  Overview
§  Ports
§  Transport interfaces
§  Caches and Coherence
§  Interconnect components

§ CPU Models
§  Simple
§  InOrder
§  Out-of-order

§ Common Tasks
§  Adding a statistic, SimObject, or Instruction

§ Conclusion

6

INTRODUCTION

7

Importance of System Simulation
§ Why make it so complicated when I only care about

§  Benchmark run time
§  CPU performance
§  Interconnect latencies
§  DRAM controller scheduling

§ CPU behavior depends on the memory system, and the
behavior of the memory system depends on the CPUs
§  Complex interactions on many different levels, application, JIT, OS,

caches, interconnect, memory controllers, devices
§  Gluing the pieces together, e.g. using traces, does not capture these

dependencies.

§ Solution: A system simulator

8

System Simulator
§ Built from a combination of M5 and GEMS

§  In doing so we lost all capitalization: gem5

§ Self-contained simulation framework
§  Does not rely on many simulators glued together

§  Although you’re welcome to glue things together
§  Built on a discrete-event simulation kernel

§ Rich availability of modules in the framework
§  Out of the box it can model entire systems

§  Not just CPU intensive apps
§  Not just memory system with traces
§  Not DRAM in isolation
§  Not execution without I/O

9

Why a Flexible Simulation Tool?

Accuracy

Fl
ex

ib
ili

ty

RTL

Programmer
View

Validation
Model

Huge amounts
of interesting
work can be
done in this

area

gem5

Profilers &
Dynamic

Instrumentation

10

Envisioned use-cases
§ SW development and verification

§  Binary-translation models (e.g. OVP/QEMU) are fast enough to do
this and have a mature SW development environment

§ HW/SW performance verification
§  Need performance measures of 1st order accuracy, capturing the

things that actually matter

§ Early Architectural Exploration
§  Need an environment where it is fast and easy to model and connect

the key architectural components of hardware platform

§ HW/SW functional verification
§  RTL is representative enough and has enough visibility and a mature

methodology

11

Operating Systems & Apps

Ubuntu 11.06 (Linux 2.6.35.8) Android Gingerbread

12

Real Applications

13

Graphical Statistics

Currently ARM internal

14

Multiple System Simulations

Client

CPU

L1

L2

M
em

or
y Disk

Net

L1

I/O

Server

CPU

L1

L2

M
em

or
y Disk

Net

L1

I/O

Simulated Ethernet

15

Main Goals
Open source tool focused on architectural modeling

§ Flexibility
§  Multiple CPU models, memory systems, and device models

§  Across the speed vs. accuracy spectrum

§ Availability
§  For both academic and corporate researchers
§  No dependence on proprietary code
§  BSD license

§ Collaboration
§  Combined effort of many with different specialties
§  Active community leveraging collaborative technologies

16

High-level Features
§ Configurable CPU models

§  Simple one-IPC (SimpleAtomic/Timing)

§  Detailed in-order execution (InOrder)

§  Detailed out-of-order execution (O3)

§  Pluggable memory system
§  Stitch memory system together out of components
§  Use Wisconsin’s Ruby

§ Device Models
§  Enough device models to boot Linux

§  Boot real operating systems
§  Linux, Android

§ Many ISAs

17

What we would like gem5 to be
§ Something that spares you the pain we’ve been through

§  A community resource

§ Modular enough to localize changes
§  Contribute back, and spare others some pain

§ A path to reproducible/comparable results
§  A common platform for evaluating ideas

§ Simulator of choice for performance exploration

18

Where did it come from

19

What is new?
§  If you haven’t looked at gem5 recently

§  ARM & x86 support
§  Re-worked memory system with TLM-like semantics
§  Integration with GEMS
§  SE/FS merged together
§  Frame buffers and VNC

20

BASICS

21

Building gem5
§ Platforms

§  Linux, BSD, MacOS X, Solaris, etc
§  64 bit machines help quite a bit

§ Tools
§  GCC/G++ 4.2+ (or clang 2.9+)
§  Python 2.4+
§  SCons 0.98.1+

§  http://www.scons.org
§  SWIG 1.3.40+

§  http://www.swig.org

§  If using Ubuntu install
§  apt-get install python-dev scons m4 build-essential g++�

swig zlib-dev

22

Compile Targets
§ build/<isa>/<binary>

§  ISAs:
§  ARM, ALPHA, MIPS, SPARC, POWER, X86

§ Binaries
§  gem5.debug debug build, symbols, tracing, assert
§  gem5.opt optimized build, symbols, tracing, assert
§  gem5.fast optimized build, no debugging, no symbols,

 no tracing, no assertions
§  gem5.prof gem5.fast + profiling support

23

Sample Compile
21:36:01 [/work/gem5] scons build/ARM/gem5.opt –j4

scons: Reading SConscript files ...

Checking for leading underscore in global variables...(cached) yes

Checking for C header file Python.h... (cached) yes

Checking for C library dl... (cached) yes

Checking for C library python2.7... (cached) yes

Checking for accept(0,0,0) in C++ library None... (cached) yes

Checking for zlibVersion() in C++ library z... (cached) yes

Checking for clock_nanosleep(0,0,NULL,NULL) in C library None... (cached) no

Checking for clock_nanosleep(0,0,NULL,NULL) in C library rt... (cached) no

Can't find library for POSIX clocks.

Checking for C header file fenv.h... (cached) yes

Reading SConsopts

Building in /work/gem5/build/ARM

Using saved variables file /work/gem5/build/variables/ARM

Generating LALR tables

WARNING: 1 shift/reduce conflict

scons: done reading SConscript files.

scons: Building targets ...

 [CXX] ARM/sim/main.cc -> .o

 [TRACING] -> ARM/debug/Faults.hh

 [GENERATE] -> ARM/arch/interrupts.hh

 [GENERATE] -> ARM/arch/isa_traits.hh

 [GENERATE] -> ARM/arch/microcode_rom.hh

 [CFG ISA] -> ARM/config/the_isa.hh

24

Running Simulation
21:58:32 [/work/gem5] ./build/ARM/gem5.opt -h

Usage

=====

 gem5.opt [gem5 options] script.py [script options]

 gem5 is copyrighted software; use the --copyright option for details.

Options

=======

--version
show program's version number and exit

--help, -h
show this help message and exit

--build-info, -B
Show build information

--copyright, -C
Show full copyright information

--readme, -R
Show the readme

--outdir=DIR, -d DIR
Set the output directory to DIR [Default: m5out]

--redirect-stdout, -r
Redirect stdout (& stderr, without -e) to file

--redirect-stderr, -e
Redirect stderr to file

--stdout-file=FILE
Filename for -r redirection [Default: simout]

--stderr-file=FILE
Filename for -e redirection [Default: simerr]

--interactive, -i
Invoke the interactive interpreter after running the

script

--pdb
Invoke the python debugger before running the script

--path=PATH[:PATH], -p PATH[:PATH]

Prepend PATH to the system path when invoking the

script

25

Running Simulation

Statistics Options

--stats-file=FILE
Sets the output file for statistics [Default: stats.txt]

Configuration Options

--dump-config=FILE
Dump configuration output file [Default: config.ini]

--json-config=FILE
Create JSON output of the configuration [Default: config.json]

Debugging Options

--debug-break=TIME[,TIME]

Cycle to create a breakpoint

--debug-help
Print help on trace flags

--debug-flags=FLAG[,FLAG]

Sets the flags for tracing (-FLAG disables a flag)

--remote-gdb-port=REMOTE_GDB_PORT

Remote gdb base port (set to 0 to disable listening)

Trace Options

--trace-start=TIME
Start tracing at TIME (must be in ticks)

--trace-file=FILE
Sets the output file for tracing [Default: cout]

--trace-ignore=EXPR
 Ignore EXPR sim objects

26

gem5 has two fundamental modes
§  Full system (FS)

§  For booting operating systems
§  Models bare hardware, including devices
§  Interrupts, exceptions, privileged instructions, fault handlers
§  Simulated UART output
§  Simulated frame buffer output

§  Syscall emulation (SE)
§  For running individual applications, or set of applications on MP
§  Models user-visible ISA plus common system calls
§  System calls emulated, typically by calling host OS
§  Simplified address translation model, no scheduling

§ Now dependent on how you run the binary
§  No longer need to compile different binaries

27

Sample Run – Syscall Emulation
2:08:12 [/work/gem5] ./build/ARM/gem5.opt configs/example/se.py \

-c tests/test-progs/hello/bin/arm/linux/hello

gem5 Simulator System. http://gem5.org

gem5 is copyrighted software; use the --copyright option for details.

gem5 compiled Mar 18 2012 21:58:16

gem5 started Mar 18 2012 22:10:24

gem5 executing on daystrom

command line: ./build/ARM/gem5.opt configs/example/se.py -c tests/test-progs/hello/bin/arm/
linux/hello

Global frequency set at 1000000000000 ticks per second

0: system.remote_gdb.listener: listening for remote gdb #0 on port 7000

**** REAL SIMULATION ****

info: Entering event queue @ 0. Starting simulation...

Hello world!

Exiting @ tick 3107500 because target called exit()

28

Sample Run – Full System
22:13:19 [/work/gem5] ./build/ARM/gem5.opt configs/example/fs.py

…

info: kernel located at: /dist/binaries/vmlinux.arm.smp.fb.2.6.38.8

Listening for system connection on port 5900

Listening for system connection on port 3456

0: system.remote_gdb.listener: listening for remote gdb #0 on port 7000

info: Using bootloader at address 0x80000000

**** REAL SIMULATION ****

info: Entering event queue @ 0. Starting simulation...

warn: The clidr register always reports 0 caches.

warn: clidr LoUIS field of 0b001 to match current ARM implementations.

Command Line:

Terminal:
22:13:19 [/work/gem5] ./util/term/m5term 127.0.0.1 3456

==== m5 slave terminal: Terminal 0 ====

[0.000000] Linux version 2.6.38.8-gem5 (saidi@zeep) (gcc version 4.5.2 (Sourcery G++ Lite
2011.03-41)) #1 SMP Mon Aug 15 21:18:38 EDT 2011

[0.000000] CPU: ARMv7 Processor [350fc000] revision 0 (ARMv7), cr=10c53c7f

[0.000000] CPU: VIPT nonaliasing data cache, VIPT nonaliasing instruction cache

[0.000000] Machine: ARM-RealView PBX

…

starting pid 354, tty '': '/sbin/getty -L ttySA0 38400 vt100'

AEL login:

29

Sample Run – Behind the scenes

Python interpreter compiled
 into gem5

Example Python script
(e.g. configs/example/se.py)

instantiating simulation objects
and setting their parameters

Corresponding C++ simulation
objects assembled and configured

according to Python script

Library of simulation
objects described in Python

Actual simulation

30

Objects
§ Everything you care about is an object (C++/Python)

§  Assembled using Python, simulated using C++
§  Derived from SimObject base class
§  Common code for creation, configuration parameters, naming,

checkpointing, etc.

§ Uniform method-based APIs for object types
§  CPUs, caches, memory, etc.
§  Plug-compatibility across implementations

§  Functional vs. detailed CPU
§  Conventional vs. indirect-index cache

§ Easy replication: cores, multiple systems, . . .

31

Events
§ Standard discrete-event timing model

§  Global logical time in “ticks”
§  No fixed relation to real time
§  Constants in src/sim/core.hh always relate ticks to real time

§ Picoseconds used in our examples
§  Objects schedule their own events

§ Flexibility for detail vs. performance trade-offs
§  E.g., a CPU typically schedules event at regular intervals

§ Every cycle or every n picoseconds
§  Won’t schedule self if stalled/idle

32

Ports
§  Used for connecting MemObjects together

§  e.g. enable a CPU to issue reads/writes to a memory

§  Correspond to real structural ports on system components
§  e.g. CPU has an instruction and a data port

§  Ports have distinct roles, and always appear in pairs
§  A MasterPort is connected to a SlavePort

§  Similar to TLM-2 initiator and target socket

§  Send and receive function pairs transport packets
§  sendAtomic() on a MasterPort calls recvAtomic() on connected SlavePort
§  Implementation of recvAtomic is left to SlavePort subclass

§  Result: class-specific handling with arbitrary connections and only a single
virtual function call

CPU

instr.
memory

data
memory

MasterPort SlavePort
inst.

data

33

Transport interfaces
§ Three transport interfaces: Functional, Atomic, Timing

§  All have their own transport functions on the ports

§  sendFunctional(), sendAtomic(), sendTiming()

§ Functional:
§  Used for loading binaries, debugging, introspection, etc.
§  Accesses happen instantaneously

§  Reads get the “newest” copy of the data
§ Writes update data everywhere in the memory system

§  Completes a transaction in a single function call
§  Requests complete before sendFunctional() returns

§  Equivalent to TLM-2 debug transport
§  Objects that buffer packets must be queried and updated as well

34

Transport interfaces (cont’d)
§  Atomic:

§  Completes a transaction in a single function call
§  Requests complete before sendAtomic() returns

§  Models state changes (cache fills, coherence, etc.)
§  Returns approximate latency w/o contention or queuing delay
§  Similar to TLM-2 blocking transport (without wait)
§  Used for loosely-timed simulation (fast forwarding) or warming caches

§  Timing:
§  Models all timing/queuing in the memory system
§  Split transaction into multiple phases

§  sendTiming() initiates send of request to slave
§  Slave later calls sendTiming() to send response packet

§  Similar to TLM-2 non-blocking transport
§  Used for approximately-timed simulation

§  Atomic and Timing accesses can not coexist in system

35

Statistics
§ Wide variety of statistics available

§  Scalar
§  Average
§  Vector
§  Formula
§  Histogram
§  Distribution
§  Vector Distribution

§ Currently output text
§  Soon to output Python dict

36

Checkpointing & Fast forwarding
§ Simulator can create checkpoints

§  Restore from them at a later time
§  Normally create checkpoint in atomic memory mode

§  After reaching the ROI
§  Restore from checkpoint and change the system to more detailed

§ Constraints
§  Original simulation and test simulations must have
§  Same ISA; number of cores; memory map
§  We don’t currently checkpoint cache state

§  Checkpoints should be created with Atomic CPU and no caches

37

RUNNING AN EXPERIMENT

38

Running a Syscall Emulation Experiment
§ Compiling a benchmark
§ Running a benchmark in SE mode w/atomic CPU
§ Running a benchmark with a detailed CPU
§ Stats output
§  Instrumenting and creating a checkpoint
§ Running from that checkpoint

39

Compiling a benchmark for SE
§ Do all these experiments with queens.c

§  Very old benchmark, but it’s easy to get and understand

[/work/gem5] wget https://llvm.org/svn/llvm-project/test-suite/tags/
RELEASE_14/SingleSource/Benchmarks/McGill/queens.c

[/work/gem5] arm-linux-gnueabi-gcc –DUNIX –o queens queens.c –static

§ All binaries must be compiled with static flag
§  In principle you could run a dynamic linker, but no one has done the

work yet

40

Running Compiled Program
[/work/gem5] ./build/ARM/gem5.opt configs/example/se.py -c queens –o 16

gem5 Simulator System. http://gem5.org

gem5 is copyrighted software; use the --copyright option for details.

…

**** REAL SIMULATION ****

info: Entering event queue @ 0. Starting simulation...

16 queens on a 16x16 board...

 Q - - - - - - - - - - - - - - -

 - - Q - - - - - - - - - - - - -

 - - - - Q - - - - - - - - - - -

 - Q - - - - - - - - - - - - - -

 - - - - - - - - - - - - Q - - -

 - - - - - - - - Q - - - - - - -

 - - - - - - - - - - - - - Q - -

 - - - - - - - - - - - Q - - - -

 - - - - - - - - - - - - - - Q -

 - - - - - Q - - - - - - - - - -

 - - - - - - - - - - - - - - - Q

 - - - - - - Q - - - - - - - - -

 - - - Q - - - - - - - - - - - -

 - - - - - - - - - - Q - - - - -

 - - - - - - - Q - - - - - - - -

 - - - - - - - - - Q - - - - - -

Exiting @ tick 33345000 because target called exit()

Command Line:

} SE mode output is printed on the terminal

41

Statistics Output
[/work/gem5] cat m5out/stats.txt

---------- Begin Simulation Statistics ----------

sim_seconds
0.002038
Number of seconds simulated

sim_ticks
2038122000
Number of ticks simulated

final_tick
2038122000
Number of ticks from beginning of simulation

sim_freq
1000000000000
Frequency of simulated ticks

host_inst_rate
2581679
Simulator instruction rate (inst/s)

host_op_rate
2781442
Simulator op (including micro ops) rate(op/s)

…

system.physmem.bytes_read
17774713
Number of bytes read from this memory

system.physmem.bytes_written
656551
Number of bytes written to this memory

…

system.cpu.numCycles
4076245
number of cpu cycles simulated

system.cpu.committedInsts
2763927
Number of instructions committed

system.cpu.committedOps
2977829
Number of ops (including micro ops) committed

42

Running with caches and detailed CPU
[/work/gem5] ./build/ARM/gem5.opt configs/example/se.py -c queens –o 16 --caches --l2cache \

 --cpu-type=arm_detailed

…

16 queens on a 16x16 board...

 Q - - - - - - - - - - - - - - -

 - - Q - - - - - - - - - - - - -

 - - - - Q - - - - - - - - - - -

 - Q - - - - - - - - - - - - - -

 - - - - - - - - - - - - Q - - -

 - - - - - - - - Q - - - - - - -

 - - - - - - - - - - - - - Q - -

 - - - - - - - - - - - Q - - - -

 - - - - - - - - - - - - - - Q -

 - - - - - Q - - - - - - - - - -

 - - - - - - - - - - - - - - - Q

 - - - - - - Q - - - - - - - - -

 - - - Q - - - - - - - - - - - -

 - - - - - - - - - - Q - - - - -

 - - - - - - - Q - - - - - - - -

 - - - - - - - - - Q - - - - - -

Exiting @ tick 1686872500 because target called exit()

43

Stats Output
[/work/gem5] cat m5out/stats.txt

---------- Begin Simulation Statistics ----------

sim_seconds
0.001687

Number of seconds simulated

sim_ticks
1686872500
Number of ticks simulated

final_tick
1686872500
Number of ticks from beginning of simulation

sim_freq
1000000000000
Frequency of simulated ticks

host_inst_rate
103418
Simulator instruction rate (inst/s)

host_op_rate
111421

Simulator op (including micro ops) rate(op/s)

…

system.physmem.bytes_read
 43968
Number of bytes read from this memory

system.physmem.bytes_written

0
Number of bytes written to this memory

…

system.cpu.numCycles
4076245
number of cpu cycles simulated

system.cpu.committedInsts
2763927
Number of instructions committed

system.cpu.committedOps
2977829
Number of ops (including micro ops) committed

…

system.cpu.commit.branchMispredicts 93499
The number of times a branch was mispredicted�
system.cpu.cpi
1.220635
CPI: Cycles Per Instruction

…

44

Check pointing at the Region of Interest
§ Edit queens.c

§  #include “util/m5/m5op.h”

§  Contains various op codes that cause the simulator to take action

§  Work happens in:

§  Recompile the binary when done:

 /* Find all solutions (begin recursion) */

 m5_checkpoint(0,0);

 find(0);

 …

 if (level == queens) {
/* Placed all queens? Stop. */

 ++solutions;
/* Congrats, this is a solution! */

 m5_dumpreset_stats(0,0);

[/work/gem5] arm-linux-gnueabi-gcc –DUNIX –o queens-w-chkpt queens.c \

 util/m5/m5op_arm.S --static

45

Create a Checkpoint
[/work/gem5] ./build/ARM/gem5.opt configs/example/se.py -c queens –o 16

gem5 Simulator System. http://gem5.org

gem5 is copyrighted software; use the --copyright option for details.

…

**** REAL SIMULATION ****

info: Entering event queue @ 0. Starting simulation...

Writing checkpoint

info: Entering event queue @ 6805000. Starting simulation...

…

Exiting @ tick 2038122000because target called exit()

Command Line:

Directory:
[/work/gem5] ls m5out

config.ini config.json cpt.6805000 stats.txt

46

Running from the checkpoint
[/work/gem5] ./build/ARM/gem5.opt configs/example/se.py -c queens –o 16 --caches --l2cache \

 --cpu-type=arm_detailed --checkpoint-dir=m5out -r 1

…

Switch at curTick count:10000

info: Entering event queue @ 6805000. Starting simulation...

Switched CPUS @ tick 6815000

Changing memory mode to timing

switching cpus

**** REAL SIMULATION ****

info: Entering event queue @ 6815000. Starting simulation...

Command Line:

Stats:
[/work/gem5] cat m5out/stats.txt

---------- Begin Simulation Statistics ----------

sim_seconds 0.001595

system.switch_cpus.cpi 1.191434

…

---------- End Simulation Statistics ----------

---------- Begin Simulation Statistics ----------

sim_seconds 0.000064

system.switch_cpus.cpi 1.662081

…

---------- End Simulation Statistics ----------

}

}

Stats within find(0);

Stats for when printing happened

47

Running a Full System Experiment
§ Mounting disk images and putting files on them
§ Creating scripts that run an experiment

§  Creating a checkpoint from within the simulation

§ Running the experiment
§  Using m5term

§ Running experiments from this checkpoint

48

Mounting a Disk Image
§ To mount a disk image you need to be root

§  You can do it within a VM

§ Mount command:

§ Make sure you unmount before you use the image

[/work/gem5] mount –o loop,offset=32256 linux-arm-ael.img /mnt

[/work/gem5] ls /mnt

bin boot dev etc home lib lost+found media mnt proc root sbin sys tmp usr var writable

[/work/gem5] cp queens /mnt

[/work/gem5] cp queens-w-chkpt /mnt

[/work/gem5] umount /mnt

49

Create a Boot Script
§ Scripts are executed by startup scripts on images distributed

with gem5
§  Files are read from *host* system after booting
§  Written into simulated file system
§  Executed like a shell script

#!/bin/sh

Wait for system to calm down

sleep 10

Take a checkpoint in 100000 ns

m5 checkpoint 100000

Reset the stats

m5 resetstats

Run queuens

/queens 16

Exit the simulation

m5 exit

configs/boot/queens.rcS:

50

gem5 Terminal
§ Default output from full-system simulation is on a UART

§  m5term is a terminal emulator that lets you connect to it

§ Code is in src/util/term
§  Run make in that directory and make install

§ Binary takes two parameters
§  ./m5term <host> <port>

§  If you’re running it locally, use the loopback interface
§  127.0.0.1

§ Port number is printed when gem5 starts
§  Tries 3456 and increments until it find a free port
§  So if you’re running multiple copies on a single machine you might

find 3457, 3458, …

51

Running in Full System Mode
[/work/gem5] export LINUX_IMAGE=/tmp/linux-arm-ael.img

[/work/gem5] ./build/ARM/gem5.opt configs/example/fs.py --script=./configs/boot/queens.rcS

gem5 Simulator System. http://gem5.org

…

**** REAL SIMULATION ****

info: Entering event queue @ 0. Starting simulation...

…

Writing checkpoint

info: Entering event queue @ 32358957649500. Starting simulation...

Exiting @ tick 32358957649500 because m5_exit instruction encountered

Command Line:

Terminal:
[/work/gem5] ./util/term/m5term 127.0.0.1 3456

==== m5 slave terminal: Terminal 0 ====

[0.000000] Linux version 2.6.38.8-gem5 (saidi@zeep) (gcc version 4.5.2 (Sourcery G++ Lite

[0.000000] CPU: ARMv7 Processor [350fc000] revision 0 (ARMv7), cr=10c53c7f

…

init started: BusyBox v1.15.3 (2010-05-07 01:27:07 BST)

starting pid 331, tty '': '/etc/rc.d/rc.local'

warning: can't open /etc/mtab: No such file or directory

Thu Jan 1 00:00:02 UTC 1970

S: devpts

Thu Jan 1 00:00:02 UTC 1970

16 queens on a 16x16 board...

 Q - - - - - - - - - - - - - - -

52

Restoring from Checkpoint
[/work/gem5] ./build/ARM/gem5.opt configs/example/fs.py --caches --l2cache \

 --cpu-type=arm_detailed -r 1

…

Switch at curTick count:10000

info: Entering event queue @ 32344924619000. Starting simulation...

Switched CPUS @ tick 32344924619000

Changing memory mode to timing

switching cpus

**** REAL SIMULATION ****

info: Entering event queue @ 32344924629000. Starting simulation...

…

Exiting @ tick 32394507487500 because m5_exit instruction encountered

Command Line:

Terminal:
[/work/gem5] ./util/term/m5term 127.0.0.1 3456

==== m5 slave terminal: Terminal 0 ====

16 queens on a 16x16 board...

 Q - - - - - - - - - - - - - - -

 - - Q - - - - - - - - - - - - -

 - - - - Q - - - - - - - - - - -

 - Q - - - - - - - - - - - - - -

 - - - - - - - - - - - - Q - - -

 - - - - - - - - Q - - - - - - -

…

53

What output is generated?
§ Files describing the configuration

§  config.ini – ini formatted file that has all the objects and their
 parameters

§  config.json – json formatted file which is easy to parse for input into
 other simulators (e.g. power)

§ Statistics
§  stats.txt – You’ve seen several examples of this

§ Checkpoints
§  cpt.<cycle number> -- Each checkpoint has a cycle number. The –r N

 parameter restores the Nth checkpoint in the directory

§ Output
§  *.terminal – Serial port output from the simulation
§  frames_<system> – Framebuffer output

54

DEBUGGING

55

Debugging Facilities
§ Tracing

§  Instruction tracing
§  Diffing traces

§ Using gdb to debug gem5
§  Debugging C++ and gdb-callable functions
§  Remote debugging

§ Pipeline viewer

56

Tracing/Debugging
§ printf() is a nice debugging tool

§  Keep good print statements in code and selectively enable them
§  Lots of debug output can be a very good thing when a problem arises
§  Use DPRINTFs in code
§  DPRINTF(TLB, "Inserting entry into TLB with pfn:%#x…)

§ Example flags:
§  Fetch, Decode, Ethernet, Exec, TLB, DMA, Bus, Cache, O3CPUAll

§  Print out all flags with –debug-help

§ Enabled on the command line
§  --debug-flags=Exec

§  --trace-start=30000

§  --trace-file=my_trace.out

§  Enable the flag Exec; start at tick 30000; Write to my_trace.out

57

Sample Run with Debugging

22:44:28 [/work/gem5] ./build/ARM/gem5.opt --debug-flags=Decode--trace-start=50000 --trace-
file=my_trace.out configs/example/se.py -c tests/test-progs/hello/bin/arm/linux/hello

…

**** REAL SIMULATION ****

info: Entering event queue @ 0. Starting simulation...

Hello world!

hack: be nice to actually delete the event here

Exiting @ tick 3107500 because target called exit()

Command Line:

my_trace.out:

2:44:47 [/work/gem5] head m5out/my_trace.out

 50000:
system.cpu:
Decode:
Decoded cmps instruction:
0xe353001e

 50500:
system.cpu:
Decode:
Decoded ldr instruction:
0x979ff103

 51000:
system.cpu:
Decode:
Decoded ldr instruction:
0xe5107004

 51500:
system.cpu:
Decode:
Decoded ldr instruction:
0xe4903008

 52000:
system.cpu:
Decode:
Decoded addi_uop instruction:
0xe4903008

 52500:
system.cpu:
Decode:
Decoded cmps instruction:
0xe3530000

 53000:
system.cpu:
Decode:
Decoded b instruction:
0x1affff84

 53500:
system.cpu:
Decode:
Decoded sub instruction:
0xe2433003

 54000:
system.cpu:
Decode:
Decoded cmps instruction:
0xe353001e

 54500:
system.cpu:
Decode:
Decoded ldr instruction:
0x979ff103

58

Adding Your Own Flag
§ Print statements put in source code

§  Encourage you to add ones to your models or contribute ones you
find particularly useful

§ Macros remove them from the gem5.fast binary
§  There is no performance penalty for adding them
§  To enable them you need to run gem5.opt or gem5.debug

§ Adding one with an existing flag
§  DPRINTF(<flag>, “normal printf %s\n”, “arguments”);

§ To add a new flag add the following in a Sconscript

§  DebugFlag(‘MyNewFlag’)

§  Include corresponding header, e.g. #include “debug/

MyNewFlag.hh”

59

Instruction Tracing
§ Separate from the general debug/trace facility

§  But both are enabled the same way

§ Per-instruction records populated as instruction executes
§  Start with PC and mnemonic
§  Add argument and result values as they become known

§ Printed to trace when instruction completes
§ Flags for printing cycle, symbolic addresses, etc.

2:44:47 [/work/gem5] head m5out/my_trace.out

50000:
T0 : 0x14468
: cmps r3, #30
: IntAlu : D=0x00000000

50500:
T0 : 0x1446c
: ldrls pc, [pc, r3 LSL #2]
: MemRead : D=0x00014640 A=0x14480

51000:
T0 : 0x14640
: ldr r7, [r0, #-4]
: MemRead : D=0x00001000 A=0xbeffff0c

51500:
T0 : 0x14644.0
: ldr r3, [r0] #8
: MemRead : D=0x00000011 A=0xbeffff10

52000:
T0 : 0x14644.1
: addi_uop r0, r0, #8
: IntAlu : D=0xbeffff18

52500:
T0 : 0x14648
: cmps r3, #0
: IntAlu : D=0x00000001

53000:
T0 : 0x1464c
: bne

: IntAlu :

60

Using GDB with gem5
§ Several gem5 functions are designed to be called from GDB

§  schedBreakCycle() – also with --debug-break

§  setDebugFlag()/clearDebugFlag()

§  dumpDebugStatus()

§  eventqDump()

§  SimObject::find()

§  takeCheckpoint()

61

Using GDB with gem5
2:44:47 [/work/gem5] gdb --args ./build/ARM/gem5.opt configs/example/fs.py

GNU gdb Fedora (6.8-37.el5)

...

(gdb) b main�
Breakpoint 1 at 0x4090b0: file build/ARM/sim/main.cc, line 40.

(gdb) run

Breakpoint 1, main (argc=2, argv=0x7fffa59725f8) at build/ARM/sim/main.cc

main(int argc, char **argv)

(gdb) call schedBreakCycle(1000000)

(gdb) continue�
Continuing.

gem5 Simulator System�
...�
0: system.remote_gdb.listener: listening for remote gdb #0 on port 7000

**** REAL SIMULATION ****�
info: Entering event queue @ 0. Starting simulation...

Program received signal SIGTRAP, Trace/breakpoint trap.
0x0000003ccb6306f7 in kill () from /lib64/libc.so.6

62

Using GDB with gem5
(gdb) p _curTick

$1 = 1000000

(gdb) call setDebugFlag("Exec")

(gdb) call schedBreakCycle(1001000)

(gdb) continue�
Continuing.

1000000: system.cpu T0 : @_stext+148. 1 : addi_uop r0, r0, #4 : IntAlu : D=0x00004c30

1000500: system.cpu T0 : @_stext+152 : teqs r0, r6 : IntAlu : D=0x00000000

Program received signal SIGTRAP, Trace/breakpoint trap.

0x0000003ccb6306f7 in kill () from /lib64/libc.so.6

(gdb) print SimObject::find("system.cpu")�
$2 = (SimObject *) 0x19cba130�
(gdb) print (BaseCPU*)SimObject::find("system.cpu")

$3 = (BaseCPU *) 0x19cba130�
(gdb) p $3->instCnt�
$4 = 431

63

Diffing Traces
§ Often useful to compare traces from two simulations

§  Find where known good and modified simulators diverge

§  Standard diff only works on files (not pipes)

§  …but you really don’t want to run the simulation to completion first

§  util/rundiff

§  Perl script for diffing two pipes on the fly

§  util/tracediff

§  Handy wrapper for using rundiff to compare gem5 outputs
§  tracediff “a/gem5.opt|b/gem5.opt” –debug-flags=Exec

§  Compares instructions traces from two builds of gem5
§  See comments for details

64

Advanced Trace Diffing
§ Sometimes if you run into a nasty bug it’s hard to compare

apples-to-apples traces
§  Different cycles counts, different code paths from interrupts/timers

§ Some mechanisms that can help:
§  -ExecTicks don’t print out ticks
§  -ExecKernel don’t print out kernel code
§  -ExecUser don’t print out user code
§  ExecAsid print out ASID of currently running process

§ State trace
§  PTRACE program that runs binary on real system and compares

cycle-by-cycle to gem5
§  Supports ARM, x86, SPARC
§  See wiki for more information

65

Checker CPU
§ Runs a complex CPU model such as the O3 model in tandem

with a special Atomic CPU model
§ Checker re-executes and compares architectural state for

each instruction executed by complex model at commit
§ Used to help determine where a complex model begins

executing instructions incorrectly in complex code

§ Checker cannot be used to debug MP or SMT systems
§ Checker cannot verify proper handling of interrupts
§ Certain instructions must be marked unverifiable i.e. “wfi”

66

Remote Debugging
./build/ARM/gem5.opt configs/example/fs.py

gem5 Simulator System

...

command line: ./build/ARM/gem5.opt configs/example/fs.py

Global frequency set at 1000000000000 ticks per second

info: kernel located at: /dist/binaries/vmlinux.arm

Listening for system connection on port 5900

Listening for system connection on port 3456

0: system.remote_gdb.listener: listening for remote gdb #0 on port 7000
info: Entering event queue @ 0. Starting simulation...

67

Remote Debugging
GNU gdb (Sourcery G++ Lite 2010.09-50) 7.2.50.20100908-cvs Copyright (C)
2010 Free Software Foundation, Inc.�
...�
(gdb) symbol-file /dist/binaries/vmlinux.arm

Reading symbols from /dist/binaries/vmlinux.arm...done.

(gdb) set remote Z-packet on�
(gdb) set tdesc filename arm-with-neon.xml�
(gdb) target remote 127.0.0.1:7000

Remote debugging using 127.0.0.1:7000�
cache_init_objs (cachep=0xc7c00240, flags=3351249472) at mm/slab.c:2658

(gdb) step�
sighand_ctor (data=0xc7ead060) at kernel/fork.c:1467�
(gdb) info registers

r0 0xc7ead060
-940912544

r1 0x5201312

r2 0xc002f1e4
-1073548828

r3 0xc7ead060
-940912544

r4 0x00

r5 0xc7ead020
-940912608

…

68

Python Debugging
§  It is possible to drop into the python interpreter (-i flag)

§  This currently happens after the script file is run

§  If you want to do this before objects are instantiated, remove
them from script
§  It is possible to drop into the python debugger (--pdb flag)
§  Occurs just before your script is invoked
§  Lets you use the debugger to debug your script code

§ Code that enables this stuff is in src/python/m5/main.py
§  At the bottom of the main function
§  Can copy the mechanism directly into your scripts, if in the wrong

place for you needs
§  import pdb

§  pdb.set_trace()

69

O3 Pipeline Viewer
Use --debug-flags=O3PipeView and util/o3-pipeview.py

70

MEMORY SYSTEM

71

Goals
§ Model a system with heterogeneous applications, running on

a set of heterogeneous processing engines, using
heterogeneous memories and interconnect
§  CPU centric: capture memory system behaviour accurate enough
§  Memory centric: Investigate memory subsystem and interconnect

architectures

Interconnect

Processor Processor
Processor

CPU

Video
backend

Video
decoder GPU GPU

GPU
GPU

DMA

DRAM DRAM
DRAM

3D-DRAM SRAM NAND NAND
PCM STT-RAM

Interconnect

72

Goals, contd.
§ Two worlds...

§  Computation-centric simulation
§  e.g. SimpleScalar, Simics, Asim etc
§ More behaviourally oriented, with ad-hoc ways of describing

parallel behaviours and intercommunication
§  Communication-centric simulation

§  e.g. SystemC+TLM2 (IEEE standard)
§ More structurally oriented, with parallelism and interoperability as

a key component

§  ...gem5 striking a balance
§  Easy to extend (flexible)
§  Easy to understand (well defined)
§  Fast enough (to run full-system simulation at MIPS)
§  Accurate enough (to draw the right conclusions)

73

Ports, Masters and Slaves
§ MemObjects are connected through master and slave ports
§ A master module has at least one master port, a slave

module at least one slave port, and an interconnect module
at least one of each
§  A master port always connects to a slave port
§  Similar to TLM-2 notation

CPU

memory0

bus

memory1

Master
module Interconnect

module

Slave module

Slave port Master port

I$

D$

74

Requests & Packets
§ Protocol stack based on Requests and Packets

§  Uniform across all MemObjects (with the exception of Ruby)
§  Aimed at modelling general memory-mapped interconnects
§  A master module, e.g. a CPU, changes the state of a slave module,

e.g. a memory through a Request transported between master ports
and slave ports using Packets

CPU memory

Request req(addr, size, flags, masterId);
Packet* req_pkt = new Packet(req, MemCmd::ReadReq);
...

...
delete resp_pkt;

if (req_pkt->needsResponse()) {
 req_pkt->makeResponse();
} else {
 delete req_pkt;
}
...

75

Requests & Packets
§ Requests contain information persistent throughout a

transaction
§  Virtual/physical addresses, size
§ MasterID uniquely identifying the module behind the request
§  Stats/debug info: PC, CPU, and thread ID

§ Requests are transported as Packets
§  Command (ReadReq, WriteReq, ReadResp, etc.) (MemCmd)
§  Address/size (may differ from request, e.g., block aligned cache miss)
§  Pointer to request and pointer to data (if any)
§  Source & destination port identifiers (relative to interconnect)

§  Used for routing responses back to the master
§  Always follow the same path

§  SenderState opaque pointer
§  Enables adding arbitrary information along packet path

76

Functional transport interface
§  On a master port we send a request packet using sendFunctional
§  This in turn calls recvFunctional on the connected slave port
§  For a specific slave port we implement the desired functionality by

overloading recvFunctional
§  Typically check internal (packet) buffers against request packet
§  For a slave module, turn the request into a response (without altering state)
§  For an interconnect module, forward the request through the appropriate

master port using sendFunctional
§  Potentially after performing snoops by issuing sendFunctionalSnoop

CPU memory

masterPort.sendFunctional(pkt);
// packet is now a response

MySlavePort::recvFunctional(PacketPtr pkt)
{
 ...

77

Atomic transport interface
§  On a master port we send a request packet using sendAtomic
§  This in turn calls recvAtomic on the connected slave port
§  For a specific slave port we implement the desired functionality by

overloading recvAtomic
§  For a slave module, perform any state updates and turn the request into a

response
§  For an interconnect module, perform any state updates and forward the

request through the appropriate master port using sendAtomic
§  Potentially after performing snoops by issuing sendAtomicSnoop

§  Return an approximate latency

CPU memory

Tick latency = masterPort.sendAtomic(pkt);
// packet is now a response

MySlavePort::recvAtomic(PacketPtr pkt)
{
 ...
 return latency;
}

78

Timing transport interface
§  On a master port we try to send a request packet using sendTiming
§  This in turn calls recvTiming on the connected slave port
§  For a specific slave port we implement the desired functionality by

overloading recvTiming
§  Perform state updates and potentially forward request packet
§  For a slave module, typically schedule an action to send a response at a later time

§  A slave port can choose not to accept a request packet by returning false
§  The slave port later has to call sendRetry to alert the master port to try again

CPU memory

bool success = masterPort.sendTiming(pkt);
if (success) {
 // request packet is sent
 ...
} else {
 // failed, will get
 // retry from slave port
 ...
}

MySlavePort::recvTiming(PacketPtr pkt)
{
 assert(pkt->isRequest());
 ...
 return true/false;
}

79

Timing transport interface (cont’d)
§  Responses follow a symmetric pattern in the opposite direction
§  On a slave port we try to send a response packet using sendTiming
§  This in turn calls recvTiming on the connected master port
§  For a specific master port we implement the desired functionality by

overloading recvTiming
§  Perform state updates and potentially forward response packet
§  For a master module, typically schedule a succeeding request

§  A master port can choose not to accept a response packet by returning
false
§  The master port later has to call sendRetry to alert the slave port to try again

CPU memory

bool success = slavePort.sendTiming(pkt);
if (success) {
 // response packet is sent
 ...
} else { ...

MyMasterPort::recvTiming(PacketPtr pkt)
{
 assert(pkt->isResponse());
 ...
 return true/false;
}

80

Ruby for Networks and Coherence
§ As an alternative to the conventional memory system gem5

also integrates Ruby
§ Create networked interconnects based on domain-specific

language (SLICC) for coherence protocols
§ Detailed statistics

§  e.g., Request size/type distribution, state transition frequencies, etc...

§ Detailed component simulation
§  Network (fixed/flexible pipeline and simple)
§  Caches (Pluggable replacement policies)

§ Runs with Alpha and X86
§  Limited support for functional accesses

81

Caches
§ Single cache model with several components:

§  Cache: request processing, miss handling, coherence
§  Tags: data storage and replacement (LRU, IIC, etc.)
§  Prefetcher: N-Block Ahead, Tagged Prefetching, Stride Prefetching
§  MSHR & MSHRQueue: track pending/outstanding requests

§  Also used for write buffer
§  Parameters: size, hit latency, block size, associativity, number of

MSHRs (max outstanding requests)

82

Coherence protocol
§ MOESI bus-based snooping protocol

§  Support nearly arbitrary multi-level hierarchies at the expense of
some realism

§ Does not enforce inclusion
§ Magic “express snoops” propagate upward in zero time

§  Avoid complex race conditions when snoops get delayed
§  Timing is similar to some real-world configurations

§  L2 keeps copies of all L1 tags
§  L2 and L1s snooped in parallel

83

Buses & Bridges
§ Create rich system interconnect topologies using a simple

bus model and bus bridge
§ Buses do address decoding and arbitration

§  Distributes snoops and aggregates snoop responses
§  Routes responses
§  Configurable width and clock speed

§ Bridges connects two buses
§  Queues requests and forwards them
§  Configurable amount of queuing space for requests and responses

84

Memory
§ All memories in the system inherit from AbstractMemory

§  Encapsulates basic “memory behaviour”:
§  Has an address range with a start and size
§  Can perform a zero-time functional access and normal access

§ SimpleMemory is currently the only subclass
§  Multi-port memory controller
§  Fixed-latency memory (possibly with a variance)
§  Infinite throughput

85

Work in progress
§ 4-phase handshakes like TLM-2

§  Begin/end request/response
§  Enable straight forward modeling of contention and arbitration
§  Add associated library of general arbiters for shared buses and

memory controllers

§ Communication monitor
§  Insert as a structural component where stats are desired
§  Captures a wide range of communication stats: bandwidth, latency,

inter-transaction time, outstanding transactions etc
§  Can be found on the review board

§ Traffic generators
§  Inject requests based on probabilistic state-transition diagrams
§  Black-box IP models or “predictable” scenarios for memory system

testing and performance validation

86

Instantiating and Connecting Objects
class BaseCPU(MemObject):

 icache_port = MasterPort("Instruction Port")

 dcache_port = MasterPort("Data Port")

 …

class BaseCache(MemObject):

 cpu_side = SlavePort("Port on side closer to CPU")

 mem_side = MasterPort("Port on side closer to MEM")

 ...

class Bus(MemObject):

 slave = VectorSlavePort("vector port for connecting masters")

 master = VectorMasterPort("vector port for connecting slaves")

 …

system.cpu.icache_port = system.icache.cpu_side

system.cpu.dcache_port = system.dcache.cpu_side

system.icache.mem_side = system.l2bus.slave

system.dcache.mem_side = system.l2bus.slave

…

87

CPU MODELS

88

CPU Models – System Level View
§ CPU Models are design to be “hot pluggable” with arbitrary

ISA and memory systems

CPU

Decoder

TLB

Faults

Interrupts

AtomicSimpleCPU

TimingSimpleCPU

InOrder CPU

O3 CPU

Memory

Classic

Ruby

89

Simple CPU Models (1)
§ Models Single-Thread 1 CPI Machine
§ Two Types:

§  AtomicSimpleCPU
§  TimingSimpleCPU

§ Common Uses:
§  Fast, Functional Simulation

§  2.9 million and 1.2 million instructions per second on the twolf
benchmark

§  Warming Up Caches
§  Studies that do not require detailed CPU modeling

90

Atomic Simple CPU
§ On every CPU tick() perform

all operations for an
instruction

§ Memory accesses use
atomic methods

§ Fastest functional simulation

91

Timing Simple CPU
§ Memory accesses use timing

path

§ CPU waits until memory
access returns

§ Fast, provides some level of
timing

92

Detailed CPU Models
§ Parameterizable Pipeline Models w/SMT support
§ Two Types

§  InOrderCPU
§  O3CPU

§  “Execute in Execute”, detailed modeling
§  Roughly an order-of-magnitude slower

§  ~200K instructions per second on twolf
§  Models the timing for each pipeline stage
§  Forces both timing and execution of simulation to be accurate
§  Important for Coherence, I/O, Multiprocessor Studies, etc

§ Both only support some architecutres
§  See Status Matrix on gem5.org for up-to-date info

93

InOrder CPU Model
§ Default 5-stage pipeline

§  Fetch, Decode, Execute, Memory, Writeback

§ Key Resources
§  Cache, Execution, BranchPredictor, etc.
§  Pipeline stages

§ Pipeline stages interact with Resource Pool
§ Pipeline defined through Instruction Schedules

§  Each instruction type defines what resources they need in a particular
stage

§  If an instruction can’t complete all it’s resource requests in one stage,
it blocks the pipeline

94

Out-of-Order (O3) CPU Model
§ Default 7-stage pipeline

§  Fetch, Decode, Rename, Issue, Execute, Writeback, Commit
§  Model varying amount of stages by changing the delay between them

§  For example: fetchToDecodeDelay

§ Key Resources
§  Physical Registers, IQ, LSQ, ROB, Functional Units

95

ThreadContexts
§  Interface for accessing total architectural state of a single

thread
§  PC, register values, etc.

§ Used to obtain pointers to key classes
§  CPU, process, system, ITB, DTB, etc.

§ Abstract base class
§  Each CPU model must implement its own derived ThreadContext

96

Instruction Decoding

Memory

Byte Byte Byte Byte Byte Byte Byte Byte

Predecoder

ExtMachineInst

Decoder

Context

StaticInst Macro-op

97

StaticInst
§ Represents a decoded instruction

§  Has classifications of the inst
§  Corresponds to the binary machine inst
§  Only has static information

§ Has all the methods needed to execute an instruction
§  Tells which regs are source and dest
§  Contains the execute() function
§  ISA parser generates execute() for all insts

98

DynInst
§ Dynamic version of StaticInst

§  Used to hold extra information detailed CPU models
§  BaseDynInst

§  Holds PC, Results, Branch Prediction Status
§  Interface for TLB translations

§ Specialized versions for detailed CPU models

99

ISA Description Language
§ Custom domain-specific language

§ Defines decoding & behavior of ISA

§ Generates C++ code
§  Scads of StaticInst subclasses
§  decodeInst() function

§ Maps machine instruction to StaticInst instance
§  Multiple scads of execute() methods

§  Cross-product of CPU models and StaticInst subclasses

100

COMMON TASKS

101

Common Tasks
§ Adding a statistic
§ Parameters and SimObject
§ Creating an SimObject

§  Configuration
§  Initialization
§  Serialization
§  Events

§  Instrumenting a benchmark

102

Adding a statistic
§ Add a statistic to the atomic CPU model

§  Track number of instruction committed in user mode

§ Number of statistics classes in gem5
§  Scalar, Average, Vector, Formula, Histogram, Distribution, Vector Dist

§ We’ll choose a Scalar and a Formula
§  Count number of instructions in user mode
§  Formula to print percentage out of total

103

Add Stats to src/cpu/simple/base.hh
 // statistics

 virtual void regStats();

 virtual void resetStats();

 // number of simulated instructions

 …

 Stats::Scalar numInsts;

 …

 Stats::Scalar numOps;

 …

 Stats::Scalar numUserInsts;

 Stats::Formula percentUserInsts;

}
•  Controls registering the statistics when the

simulation starts.
•  All stats must be registered in regStats() as they

can’t be dynamically added during the running
simulation.

•  resetStats() is called when the stats are zerod; You
normally don’t need to do anything for this.

}
•  numUserInsts will contain count of

instructions executed in user mode
•  percentUserInsts will be numUserInsts/

numInsts

104

Add Stats to src/cpu/simple/base.cc
 numInsts

 .name(name() + ".committedInsts")

 .desc("Number of instructions committed")

 ;

 numUserInsts

 .name(name() + ".committedUserInsts")

 .desc("Number of instructions committed”

 “ while in use code”)

 ;

 percentUserInsts

 .name(name() + ”.percentUserInsts")

 .desc(”Percent of total of instructions”

 “ committed while in use code”)

 ;

…�
 idleFraction = constant(1.0) - notIdleFraction;

 percentUserInsts = numUserInsts/numInsts;

} •  Give the stats we created in the
header file a name and a
description

•  Other stat types (e.g. vector)
need a length here

} •  Formulas will be evaluated
when statistics are output

105

Accumulate numUserInsts
 void countInst()

 {

 if (!curStaticInst->isMicroop() || curStaticInst->isLastMicroop()) {

 numInst++;

 numInsts++;

 if (TheISA::inUserMode(tc))

 numUserInsts++;

 }

 …

 }

106

Look at the results
[/work/gem5] ./build/ARM/gem5.opt configs/example/fs.py --script=./configs/boot/halt.rcS

gem5 Simulator System. http://gem5.org

…

**** REAL SIMULATION ****

info: Entering event queue @ 0. Starting simulation...

…

Exiting @ tick 2332316587000because m5_exit instruction encountered

Command Line:

Stats:

[/work/gem5] grep Insts m5out/stats.txt

system.cpu.committedInsts
 59262896
Number of instructions committed

system.cpu.committedUserInsts 6426560
Number of instructions committed while in

 user code

system.cpu.percentUserInsts
 0.108442
Percent of instructions committed while in

 user code

107

Parameters and SimObjects
§ Parameters to SimObjects are synthesized from Python

structures that represent them
§  This example is from src/dev/arm/Realview.py

class Pl011(Uart):

 type = 'Pl011'

 gic = Param.Gic(Parent.any, "Gic to use for interrupting")

 int_num = Param.UInt32("Interrupt number that connects to GIC")

 end_on_eot = Param.Bool(False, "End the simulation when a EOT is received")

 int_delay = Param.Latency("100ns", "Time between action and interrupt generation")

 Python class name
 Python base class
C++ class

Parameter type   Parameter default  Parameter Description
 Parameter name

108

Auto-generated Header file
#ifndef __PARAMS__Pl011__

#define __PARAMS__Pl011__

class Pl011;

#include <cstddef>

#include "base/types.hh”

#include "params/Gic.hh"

##include "base/types.hh"

#include "params/Uart.hh"

struct Pl011Params

 : public UartParams

{

 Pl011 * create();

 uint32_t int_num;

 Gic * gic;

 bool end_on_eot;

 Tick int_delay;

};

#endif // __PARAMS__Pl011__

class Pl011(Uart):

 type = 'Pl011'

 gic = Param.Gic(Parent.any, …)

 int_num = Param.UInt32(…)

 end_on_eot = Param.Bool(False, "End …)

 int_delay = Param.Latency("100ns", "Time …")

109

How Parameters are used in C++

Pl011::Pl011(const Pl011Params *p)

 : Uart(p), control(0x300), fbrd(0), ibrd(0), lcrh(0), ifls(0x12), imsc(0),

 rawInt(0), maskInt(0), intNum(p->int_num), gic(p->gic),

 endOnEOT(p->end_on_eot), intDelay(p->int_delay), intEvent(this)

{

 pioSize = 0xfff;

}

You can also access parameters through params() accessor on SimObject
incase you have parameters that aren’t stored in a SimObject directly.

src/dev/arm/pl011.cc:

110

Creating a SimObject
§ Derive Python class from Python SimObject

§  Defines parameters, ports and configuration
§  Parameters in Python are automatically turned into C++ struct and

passed to C++ object
§  Add Python file to SConscript

§  Or, place it in an existing SConscript

§ Derive C++ class from C++ SimObject
§  Defines the simulation behavior
§  See src/sim/sim_object.{cc,hh}
§  Add C++ filename to SConscript in directory of new object
§  Need to make sure you have a create function for the object

§  Look at the bottom of an existing object for info

§ Recompile

111

SimObject Initialization
§ SimObjects go through a sequence of initialization

1.  C++ object construction
§  Other SimObjects in the system may not be constructed yet

2.  SimObject::init()
§  Called on every object before the first simulated cycle
§  Useful place to put initialization that requires other SimObjects

3.  SimObject::initState()
§  Called on every SimObject when not restoring from a checkpoint

4.  SimObject::loadState()
§  Called on every SimObject when restoring from a checkpoint
§  By default the implementation calls SimObject::unserialize()

112

Creating/Using Events
§ One of the most common things in an event driven simulator

is scheduling events
§  Declaring events and handlers is easy:

§  Scheduling them is easy too:

 /** Handle when a timer event occurs */

void timerHappened();

EventWrapper<ClassName, &ClassName::timerHappend> timerEvent;

/** something that requires me to schedule an event at time t**/

if (timerEvent.scheduled())

 timerEvent.reschedule(curTick() + t);

else

 timerEvent.schedule(curTick() + t);

113

Checkpointing SimObject State
§  If you have state that needs to be saved when a checkpoint is

created you need to serialize or marshal that data
§ When a checkpoint happens SimObject::drain() is called

§  Objects need to return if they’re OK to drain or not
§  Should always be OK in atomic mode
§  In timing mode you stop issuing transactions and complete

outstanding

§ When every object is ok to checkpoint SimObject::serialize()
§  Save necessary state (not parameters you get from config system)
§  SERIALIZE_*() macros help

§ To restore the state SimObject::loadState() is called
§  This calls SimObject::unserialize() by default
§  UNSERIALIZE_*() macros

114

Checkpointing Timers and Objects
§ Checkpointing events, objects are slightly more difficult

§  To checkpoint an object you can use (UN)SERIALIZE_OBJPTR()
§  Save object name

§  To save an event you need to check if it’s scheduled

 bool is_in_event = timerEvent.scheduled();

 SERIALIZE_SCALAR(is_in_event);

 Tick event_time;

 if (is_in_event){

 event_time = timerEvent.when();

 SERIALIZE_SCALAR(event_time);

 }

115

Instrumenting a Benchmark
§ You can add instructions that tell simulator to take action

inside the binary
§  We went through some examples with checkpointing and stats reset

§ Other options are
§  m5_initparam() – get integer passed on command line –initparam=
§  m5_reset_stats(initial_delay, repeat) – reset the stats to 0
§  m5_dump_stats(initial_delay, repeat) – dump stats to text file
§  m5_work_begin(work_id, thread_id) -- begin a item sample
§  m5_work_end (work_id, thread_id) -- end a item sample

§  Average time complete work_ids will be printed in stats file

116

CONFIGURATION

117

Simulator Configuration
§ Config files that come with gem5 are meant to be examples

§  Certainly not meant to expose every parameter you would want to
change

§ Configuration files are Python
§  You can programmatically create objects
§  Put them into a hierarchy
§  gem5 will instantiate all the Python SimObjects you create and attach

them together

§ Good news is you can do anything you want for configuration
§  Possibly also bad news

118

SimObject Parameters
§ Parameters can be

§  Scalars – Param.Unsigned(5), Param.Float(5.0)
§  Arrays -- VectorParam.Unsigned([1,1,2,3])
§  SimObjects – Param.PhysicalMemory(…)
§  Arrays of SimObjects – VectorParam.PhysicalMemory(Parent.any)
§  Range – Param.Range(AddrRange(0,Addr.max))

§ Some are converted from strings:
§  Latency – Param.Latency(’15ns’)
§  Frequency – Param.Frequency(‘100MHz’)

§ Others are converted to bytes
§  MemorySize – Param.MemorySize(‘1GB’)

§ Few more complex types:
§  Time – Param.Time(‘Mon Mar 25 09:00:00 CST 2012’)
§  Ethernet Address – Param.EthernetAddr(“90:00:AC:42:45:00”)

119

A Simple Example
import m5

from m5.objects import *

class MyCache(BaseCache):

 assoc = 2

 block_size = 64

 latency = '1ns'

 mshrs = 10

 tgts_per_mshr = 5

class MyL1Cache(MyCache):

 is_top_level = True

cpu = TimingSimpleCPU(cpu_id=0)

cpu.addTwoLevelCacheHierarchy(MyL1Cache(size = '128kB'),

 MyL1Cache(size = '256kB'),

 MyCache(size = '2MB', latency='10ns'))

system = System(cpu = cpu,

 physmem =SimpleMemory(),

 membus = Bus())

120

A Simple Example Part 2

root.system.cpu.workload = LiveProcess(cmd = 'hello’, executable = binpath('hello'))

system.system_port = system.membus.slave

system.physmem.port = system.membus.master

create the interrupt controller

cpu.createInterruptController()

cpu.connectAllPorts(system.membus)

cpu.clock = '2GHz'

root = Root(full_system=False, system = system)

instantiate configuration

m5.instantiate()

simulate until program terminates

exit_event = m5.simulate(m5.MaxTick)

121

Two Classes of Configuration
§ Python files in the src directory are “built” into the executable

§  If you change one of these you need to recompile
§  Or, set the M5_OVERRIDE_PY_SOURCE env variable to True

§ Other python files aren’t built into the binary
§  They can be changed and no recompiling is needed

122

CONCLUSION

123

Summary
§ Basics of using gem5

§  High-level features
§  Running simulations
§  Debugging them

§ Under the hood
§  Memory system
§  CPU Models

§ Common Tasks
§  Adding a statistics
§  SimObject Parameters
§  Creating a SimObject
§  Instrumenting a Benchmark

124

Keep in Touch
§  Please check out the website:

§  Subscribe to the mailing lists
§  gem5-users – Questions about using/running gem5
§  gem5-dev – Questions about modifying the simulator

§  Submit a patch to our ReviewBoard
§  http://reviews.gem5.org

§  Read & Contribute to the wiki
§  http://www.gem5.org

§ We hope you found this tutorial and will find gem5 useful

§ We’d love to work with you to make gem5 more useful to the
community

§  Thank you

