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Welcome 
§ Glad you’re here! 

§ gem5 has been a multi-year effort 
§  ARM is giving this tutorial today 

§  Bit ARM-ISA focused 
§  Borrowing material from previous gem5 tutorials 

§  Many institutions and companies have contributed to the simulator 
§  Encourage you to do the same 

§ This tutorial is for you 
§  Please ask questions when you have them 
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Goals and Timeline 
§  Introduction to the gem5 simulator 

§ 09:30 – 11:00 
§ 11:00 – 11:30 -- Break  
§ 11:30 – 13:00 
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Outline Part 1 
§  Introduction 

§  Why a system simulator? 
§  Where it comes from? 
§  What it can do? 
§  High-level features 

§  Basics 
§  Compiling 
§  Running 

§ Using the simulator 
§  Checkpoints 
§  Sampling 
§  Instrumenting 
§  Results 

§ Debugging 
§  Trace 
§  Debugging the simulator 
§  Debugging the execution 
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Outline Part 2 
§ Memory System 

§  Overview 
§  Ports  
§  Transport interfaces 
§  Caches and Coherence 
§  Interconnect components 

§ CPU Models 
§  Simple 
§  InOrder 
§  Out-of-order 

§ Common Tasks 
§  Adding a statistic, SimObject, or Instruction 

§ Conclusion 
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INTRODUCTION 
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Importance of System Simulation 
§ Why make it so complicated when I only care about 

§  Benchmark run time 
§  CPU performance 
§  Interconnect latencies 
§  DRAM controller scheduling 

§ CPU behavior depends on the memory system, and the 
behavior of the memory system depends on the CPUs 
§  Complex interactions on many different levels, application, JIT, OS, 

caches, interconnect, memory controllers, devices 
§  Gluing the pieces together, e.g. using traces, does not capture these 

dependencies.  

§ Solution: A system simulator 
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System Simulator 
§ Built from a combination of M5 and GEMS 

§  In doing so we lost all capitalization: gem5 

§ Self-contained simulation framework 
§  Does not rely on many simulators glued together 

§  Although you’re welcome to glue things together  
§  Built on a discrete-event simulation kernel 

§ Rich availability of modules in the framework 
§  Out of the box it can model entire systems 

§  Not just CPU intensive apps 
§  Not just memory system with traces 
§  Not DRAM in isolation 
§  Not execution without I/O 
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Why a Flexible Simulation Tool? 
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Envisioned use-cases 
§ SW development and verification 

§  Binary-translation models (e.g. OVP/QEMU) are fast enough to do 
this and have a mature SW development environment 

§ HW/SW performance verification 
§  Need performance measures of 1st order accuracy, capturing the 

things that actually matter 

§ Early Architectural Exploration 
§  Need an environment where it is fast and easy to model and connect 

the key architectural components of hardware platform 

§ HW/SW functional verification 
§  RTL is representative enough and has enough visibility and a mature 

methodology 
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Operating Systems & Apps 
 
Ubuntu 11.06 (Linux 2.6.35.8) Android Gingerbread 
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Real Applications 
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Graphical Statistics  

Currently ARM internal 
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Multiple System Simulations 
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Main Goals 
Open source tool focused on architectural modeling  

§ Flexibility  
§  Multiple CPU models, memory systems, and device models 

§   Across the speed vs. accuracy spectrum  

§ Availability  
§  For both academic and corporate researchers 
§  No dependence on proprietary code 
§  BSD license  

§ Collaboration  
§  Combined effort of many with different specialties 
§  Active community leveraging collaborative technologies  
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High-level Features 
§ Configurable CPU models 

§  Simple one-IPC (SimpleAtomic/Timing)

§  Detailed in-order execution (InOrder)

§  Detailed out-of-order execution (O3)


§  Pluggable memory system 
§  Stitch memory system together out of components 
§  Use Wisconsin’s Ruby 

§ Device Models 
§  Enough device models to boot Linux 

§  Boot real operating systems 
§  Linux, Android 

§ Many ISAs 
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What we would like gem5 to be 
§ Something that spares you the pain we’ve been through 

§  A community resource 

§ Modular enough to localize changes 
§  Contribute back, and spare others some pain 

§ A path to reproducible/comparable results 
§  A common platform for evaluating ideas 

§ Simulator of choice for performance exploration 
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Where did it come from 
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What is new? 
§  If you haven’t looked at gem5 recently 

§  ARM & x86 support 
§  Re-worked memory system with TLM-like semantics 
§  Integration with GEMS 
§  SE/FS merged together 
§  Frame buffers and VNC 
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BASICS 
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Building gem5 
§ Platforms 

§  Linux, BSD, MacOS X, Solaris, etc 
§  64 bit machines help quite a bit 
 

§ Tools 
§  GCC/G++ 4.2+ (or clang 2.9+) 
§  Python 2.4+ 
§  SCons 0.98.1+  

§  http://www.scons.org 
§  SWIG 1.3.40+  

§  http://www.swig.org  

§  If using Ubuntu install 
§  apt-get install python-dev scons m4 build-essential g++�

swig zlib-dev
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Compile Targets 
§ build/<isa>/<binary>


§  ISAs:  
§  ARM, ALPHA, MIPS, SPARC, POWER, X86 

§ Binaries  
§  gem5.debug   debug build, symbols, tracing, assert  
§  gem5.opt   optimized build, symbols, tracing, assert  
§  gem5.fast  optimized build, no debugging, no symbols,             

   no tracing, no assertions  
§  gem5.prof  gem5.fast + profiling support  
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Sample Compile 
21:36:01 [/work/gem5] scons build/ARM/gem5.opt –j4

scons: Reading SConscript files ...

Checking for leading underscore in global variables...(cached) yes

Checking for C header file Python.h... (cached) yes

Checking for C library dl... (cached) yes

Checking for C library python2.7... (cached) yes

Checking for accept(0,0,0) in C++ library None... (cached) yes

Checking for zlibVersion() in C++ library z... (cached) yes

Checking for clock_nanosleep(0,0,NULL,NULL) in C library None... (cached) no

Checking for clock_nanosleep(0,0,NULL,NULL) in C library rt... (cached) no

Can't find library for POSIX clocks.

Checking for C header file fenv.h... (cached) yes

Reading SConsopts

Building in /work/gem5/build/ARM

Using saved variables file /work/gem5/build/variables/ARM

Generating LALR tables

WARNING: 1 shift/reduce conflict

scons: done reading SConscript files.

scons: Building targets ...

 [     CXX] ARM/sim/main.cc -> .o

 [ TRACING]  -> ARM/debug/Faults.hh

 [GENERATE]  -> ARM/arch/interrupts.hh

 [GENERATE]  -> ARM/arch/isa_traits.hh

 [GENERATE]  -> ARM/arch/microcode_rom.hh

 [ CFG ISA]  -> ARM/config/the_isa.hh
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Running Simulation 
21:58:32 [ /work/gem5] ./build/ARM/gem5.opt -h

Usage

=====

  gem5.opt [gem5 options] script.py [script options]



 gem5 is copyrighted software; use the --copyright option for details.



Options

=======

--version              
show program's version number and exit

--help, -h              
show this help message and exit

--build-info, -B        
Show build information

--copyright, -C 
Show full copyright information

--readme, -R 
Show the readme

--outdir=DIR, -d DIR 
Set the output directory to DIR [Default: m5out]

--redirect-stdout, -r 
Redirect stdout (& stderr, without -e) to file

--redirect-stderr, -e  
Redirect stderr to file

--stdout-file=FILE   
Filename for -r redirection [Default: simout]

--stderr-file=FILE  
Filename for -e redirection [Default: simerr]

--interactive, -i        
Invoke the interactive interpreter after running the

                        
script

--pdb                   
Invoke the python debugger before running the script

--path=PATH[:PATH], -p PATH[:PATH]

                        
Prepend PATH to the system path when invoking the

                        
script




25 

Running Simulation 


Statistics Options

------------------

--stats-file=FILE 
Sets the output file for statistics [Default: stats.txt]



Configuration Options

---------------------

--dump-config=FILE 
Dump configuration output file [Default: config.ini]

--json-config=FILE 
Create JSON output of the configuration [Default: config.json]



Debugging Options

-----------------

--debug-break=TIME[,TIME]

                        
Cycle to create a breakpoint

--debug-help            
Print help on trace flags

--debug-flags=FLAG[,FLAG]

                        
Sets the flags for tracing (-FLAG disables a flag)

--remote-gdb-port=REMOTE_GDB_PORT

                        
Remote gdb base port (set to 0 to disable listening)



Trace Options

-------------

--trace-start=TIME  
Start tracing at TIME (must be in ticks)

--trace-file=FILE   
Sets the output file for tracing [Default: cout]

--trace-ignore=EXPR 
   Ignore EXPR sim objects
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gem5 has two fundamental modes 
§  Full system (FS) 

§  For booting operating systems 
§  Models bare hardware, including devices 
§  Interrupts, exceptions, privileged instructions, fault handlers 
§  Simulated UART output 
§  Simulated frame buffer output 

§  Syscall emulation (SE)  
§  For running individual applications, or set of applications on MP 
§  Models user-visible ISA plus common system calls 
§  System calls emulated, typically by calling host OS 
§  Simplified address translation model, no scheduling 

§ Now dependent on how you run the binary 
§  No longer need to compile different binaries 



27 

Sample Run – Syscall Emulation  
2:08:12 [/work/gem5] ./build/ARM/gem5.opt configs/example/se.py  \ 



 
-c tests/test-progs/hello/bin/arm/linux/hello 



gem5 Simulator System.  http://gem5.org

gem5 is copyrighted software; use the --copyright option for details.



gem5 compiled Mar 18 2012 21:58:16

gem5 started Mar 18 2012 22:10:24

gem5 executing on daystrom

command line: ./build/ARM/gem5.opt configs/example/se.py -c tests/test-progs/hello/bin/arm/
linux/hello



Global frequency set at 1000000000000 ticks per second

0: system.remote_gdb.listener: listening for remote gdb #0 on port 7000

**** REAL SIMULATION ****

info: Entering event queue @ 0.  Starting simulation...

Hello world!

Exiting @ tick 3107500 because target called exit()
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Sample Run – Full System 
22:13:19 [/work/gem5] ./build/ARM/gem5.opt configs/example/fs.py 

…

info: kernel located at: /dist/binaries/vmlinux.arm.smp.fb.2.6.38.8

Listening for system connection on port 5900

Listening for system connection on port 3456

0: system.remote_gdb.listener: listening for remote gdb #0 on port 7000

info: Using bootloader at address 0x80000000

**** REAL SIMULATION ****

info: Entering event queue @ 0.  Starting simulation...

warn: The clidr register always reports 0 caches.

warn: clidr LoUIS field of 0b001 to match current ARM implementations.


Command Line: 

Terminal: 
22:13:19 [/work/gem5] ./util/term/m5term 127.0.0.1 3456

==== m5 slave terminal: Terminal 0 ====

[    0.000000] Linux version 2.6.38.8-gem5 (saidi@zeep) (gcc version 4.5.2 (Sourcery G++ Lite 
2011.03-41) ) #1 SMP Mon Aug 15 21:18:38 EDT 2011

[    0.000000] CPU: ARMv7 Processor [350fc000] revision 0 (ARMv7), cr=10c53c7f

[    0.000000] CPU: VIPT nonaliasing data cache, VIPT nonaliasing instruction cache

[    0.000000] Machine: ARM-RealView PBX

…

starting pid 354, tty '': '/sbin/getty -L ttySA0 38400 vt100'



AEL login: 
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Sample Run – Behind the scenes 

Python interpreter compiled 
 into gem5 

Example Python script 
(e.g. configs/example/se.py) 

instantiating simulation objects  
and setting their parameters  

 

Corresponding C++ simulation 
objects assembled and configured 

according to Python script 
 

 
 

Library of simulation  
objects described in Python 

 

Actual simulation 
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Objects 
§ Everything you care about is an object (C++/Python) 

§  Assembled using Python, simulated using C++ 
§  Derived from SimObject base class 
§  Common code for creation, configuration parameters, naming, 

checkpointing, etc. 

§ Uniform method-based APIs for object types 
§  CPUs, caches, memory, etc. 
§  Plug-compatibility across implementations 

§  Functional vs. detailed CPU 
§  Conventional vs. indirect-index cache 

§ Easy replication: cores, multiple systems, . . . 
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Events 
§ Standard discrete-event timing model 

§  Global logical time in “ticks” 
§  No fixed relation to real time 
§  Constants in src/sim/core.hh always relate ticks to real time 

§ Picoseconds used in our examples 
§  Objects schedule their own events 

§ Flexibility for detail vs. performance trade-offs 
§  E.g., a CPU typically schedules event at regular intervals 

§ Every cycle or every n picoseconds 
§  Won’t schedule self if stalled/idle 
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Ports 
§  Used for connecting MemObjects together 

§  e.g. enable a CPU to issue reads/writes to a memory 

§  Correspond to real structural ports on system components 
§  e.g. CPU has an instruction and a data port 

§  Ports have distinct roles, and always appear in pairs 
§  A MasterPort is connected to a SlavePort

§  Similar to TLM-2 initiator and target socket


§  Send and receive function pairs transport packets 
§  sendAtomic() on a MasterPort calls recvAtomic() on connected SlavePort 
§  Implementation of recvAtomic is left to SlavePort subclass 

§  Result: class-specific handling with arbitrary connections and only a single 
virtual function call 

CPU 

instr. 
memory 

data 
memory 

MasterPort SlavePort 
inst. 

data 
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Transport interfaces 
§ Three transport interfaces: Functional, Atomic, Timing  

§  All have their own transport functions on the ports

§  sendFunctional(), sendAtomic(), sendTiming() 


§ Functional: 
§  Used for loading binaries, debugging, introspection, etc. 
§  Accesses happen instantaneously  

§  Reads get the “newest” copy of the data 
§ Writes update data everywhere in the memory system 

§  Completes a transaction in a single function call 
§  Requests complete before sendFunctional() returns 

§  Equivalent to TLM-2 debug transport 
§  Objects that buffer packets must be queried and updated as well 
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Transport interfaces (cont’d) 
§  Atomic: 

§  Completes a transaction in a single function call 
§  Requests complete before sendAtomic() returns 

§  Models state changes (cache fills, coherence, etc.) 
§  Returns approximate latency w/o contention or queuing delay 
§  Similar to TLM-2 blocking transport (without wait) 
§  Used for loosely-timed simulation (fast forwarding) or warming caches 

§  Timing: 
§  Models all timing/queuing in the memory system 
§  Split transaction into multiple phases 

§  sendTiming() initiates send of request to slave 
§  Slave later calls sendTiming() to send response packet 

§  Similar to TLM-2 non-blocking transport 
§  Used for approximately-timed simulation 

§  Atomic and Timing accesses can not coexist in system 
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Statistics 
§ Wide variety of statistics available 

§  Scalar 
§  Average 
§  Vector 
§  Formula 
§  Histogram 
§  Distribution 
§  Vector Distribution 

§ Currently output text 
§  Soon to output Python dict 
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Checkpointing & Fast forwarding 
§ Simulator can create checkpoints 

§  Restore from them at a later time 
§  Normally create checkpoint in atomic memory mode 

§  After reaching the ROI 
§  Restore from checkpoint and change the system to more detailed 

§ Constraints 
§  Original simulation and test simulations must have 
§  Same ISA; number of cores; memory map 
§  We don’t currently checkpoint cache state 

§  Checkpoints should be created with Atomic CPU and no caches 
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RUNNING AN EXPERIMENT 
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Running a Syscall Emulation Experiment 
§ Compiling a benchmark 
§ Running a benchmark in SE mode w/atomic CPU 
§ Running a benchmark with a detailed CPU 
§ Stats output 
§  Instrumenting and creating a checkpoint 
§ Running from that checkpoint 
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Compiling a benchmark for SE 
§ Do all these experiments with queens.c 

§  Very old benchmark, but it’s easy to get and understand 

[/work/gem5]  wget https://llvm.org/svn/llvm-project/test-suite/tags/
RELEASE_14/SingleSource/Benchmarks/McGill/queens.c



[/work/gem5] arm-linux-gnueabi-gcc –DUNIX –o queens queens.c –static




§ All binaries must be compiled with static flag 
§  In principle you could run a dynamic linker, but no one has done the 

work yet
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Running Compiled Program 
[/work/gem5] ./build/ARM/gem5.opt configs/example/se.py  -c queens –o 16

gem5 Simulator System.  http://gem5.org

gem5 is copyrighted software; use the --copyright option for details.

…

**** REAL SIMULATION ****

info: Entering event queue @ 0.  Starting simulation...

16 queens on a 16x16 board...

 Q - - - - - - - - - - - - - - -

 - - Q - - - - - - - - - - - - -

 - - - - Q - - - - - - - - - - -

 - Q - - - - - - - - - - - - - -

 - - - - - - - - - - - - Q - - -

 - - - - - - - - Q - - - - - - -

 - - - - - - - - - - - - - Q - -

 - - - - - - - - - - - Q - - - -

 - - - - - - - - - - - - - - Q -

 - - - - - Q - - - - - - - - - -

 - - - - - - - - - - - - - - - Q

 - - - - - - Q - - - - - - - - -

 - - - Q - - - - - - - - - - - -

 - - - - - - - - - - Q - - - - -

 - - - - - - - Q - - - - - - - -

 - - - - - - - - - Q - - - - - -

Exiting @ tick 33345000 because target called exit()




Command Line: 

} SE mode output is printed on the terminal 
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Statistics Output 
[/work/gem5] cat m5out/stats.txt



---------- Begin Simulation Statistics ----------

sim_seconds                             
0.002038                   
# Number of seconds simulated

sim_ticks                                  
2038122000      
# Number of ticks simulated

final_tick                                 
2038122000               
# Number of ticks from beginning of simulation

sim_freq                                 
1000000000000    
# Frequency of simulated ticks

host_inst_rate                                
2581679                    
# Simulator instruction rate (inst/s)

host_op_rate                                  
2781442                   
# Simulator op (including micro ops) rate(op/s)

…

system.physmem.bytes_read  
17774713                  
# Number of bytes read from this memory

system.physmem.bytes_written
656551                    
# Number of bytes written to this memory

…

system.cpu.numCycles              
4076245                    
# number of cpu cycles simulated

system.cpu.committedInsts     
2763927                     
# Number of instructions committed

system.cpu.committedOps     
2977829                     
# Number of ops (including micro ops) committed
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Running with caches and detailed CPU 
[/work/gem5] ./build/ARM/gem5.opt configs/example/se.py  -c queens –o 16 --caches --l2cache \

                                                                       --cpu-type=arm_detailed 

…

16 queens on a 16x16 board...

 Q - - - - - - - - - - - - - - -

 - - Q - - - - - - - - - - - - -

 - - - - Q - - - - - - - - - - -

 - Q - - - - - - - - - - - - - -

 - - - - - - - - - - - - Q - - -

 - - - - - - - - Q - - - - - - -

 - - - - - - - - - - - - - Q - -

 - - - - - - - - - - - Q - - - -

 - - - - - - - - - - - - - - Q -

 - - - - - Q - - - - - - - - - -

 - - - - - - - - - - - - - - - Q

 - - - - - - Q - - - - - - - - -

 - - - Q - - - - - - - - - - - -

 - - - - - - - - - - Q - - - - -

 - - - - - - - Q - - - - - - - -

 - - - - - - - - - Q - - - - - -

Exiting @ tick 1686872500 because target called exit()
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Stats Output 
[/work/gem5] cat m5out/stats.txt



---------- Begin Simulation Statistics ----------

sim_seconds                             
0.001687 
 
# Number of seconds simulated

sim_ticks                                  
1686872500 
# Number of ticks simulated

final_tick                                 
1686872500               
# Number of ticks from beginning of simulation

sim_freq                                 
1000000000000    
# Frequency of simulated ticks

host_inst_rate                                
103418                    
# Simulator instruction rate (inst/s)

host_op_rate                                  
111421 
 
# Simulator op (including micro ops) rate(op/s)

…

system.physmem.bytes_read  
          43968 
# Number of bytes read from this memory

system.physmem.bytes_written
 
0                 
# Number of bytes written to this memory

…

system.cpu.numCycles              
4076245                    
# number of cpu cycles simulated

system.cpu.committedInsts     
2763927                     
# Number of instructions committed

system.cpu.committedOps     
2977829                     
# Number of ops (including micro ops) committed

…

system.cpu.commit.branchMispredicts             93499  
# The number of times a branch was mispredicted�
system.cpu.cpi                            
1.220635                
# CPI: Cycles Per Instruction

…
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Check pointing at the Region of Interest 
§ Edit queens.c 

§  #include “util/m5/m5op.h”

§  Contains various op codes that cause the simulator to take action 

§  Work happens in: 

§  Recompile the binary when done: 

 /* Find all solutions (begin recursion) */

    m5_checkpoint(0,0);

    find(0);



     …

     if (level == queens) {                
/* Placed all queens?  Stop. */

           ++solutions;                           
/* Congrats, this is a solution! */

           m5_dumpreset_stats(0,0);











[/work/gem5] arm-linux-gnueabi-gcc –DUNIX –o queens-w-chkpt queens.c    \



          util/m5/m5op_arm.S --static
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Create a Checkpoint 
[/work/gem5] ./build/ARM/gem5.opt configs/example/se.py  -c queens –o 16

gem5 Simulator System.  http://gem5.org

gem5 is copyrighted software; use the --copyright option for details.

…

**** REAL SIMULATION ****

info: Entering event queue @ 0.  Starting simulation...

Writing checkpoint

info: Entering event queue @ 6805000.  Starting simulation...

…

Exiting @ tick 2038122000because target called exit()




Command Line: 

Directory: 
[/work/gem5] ls m5out

config.ini  config.json  cpt.6805000  stats.txt
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Running from the checkpoint 
[/work/gem5] ./build/ARM/gem5.opt configs/example/se.py  -c queens –o 16 --caches --l2cache \

                                                                       --cpu-type=arm_detailed  --checkpoint-dir=m5out -r 1 

…

Switch at curTick count:10000

info: Entering event queue @ 6805000.  Starting simulation...

Switched CPUS @ tick 6815000

Changing memory mode to timing

switching cpus

**** REAL SIMULATION ****

info: Entering event queue @ 6815000.  Starting simulation...




Command Line: 

Stats: 
[/work/gem5] cat m5out/stats.txt

---------- Begin Simulation Statistics ----------

sim_seconds                                  0.001595

system.switch_cpus.cpi             1.191434

…

---------- End Simulation Statistics   ----------



---------- Begin Simulation Statistics ----------

sim_seconds                                  0.000064             

system.switch_cpus.cpi             1.662081 

…                      

---------- End Simulation Statistics   ----------




} 

} 

Stats within find(0); 

Stats for when printing happened 
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Running a Full System Experiment 
§ Mounting disk images and putting files on them 
§ Creating scripts that run an experiment 

§  Creating a checkpoint from within the simulation 

§ Running the experiment 
§  Using m5term 

§ Running experiments from this checkpoint 
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Mounting a Disk Image 
§ To mount a disk image you need to be root 

§  You can do it within a VM 

§ Mount command: 

§ Make sure you unmount before you use the image 

[/work/gem5] mount –o loop,offset=32256 linux-arm-ael.img /mnt



[/work/gem5] ls /mnt

bin  boot  dev  etc  home  lib  lost+found  media  mnt  proc  root  sbin  sys  tmp  usr  var  writable



[/work/gem5] cp queens /mnt



[/work/gem5] cp queens-w-chkpt /mnt








[/work/gem5] umount /mnt
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Create a Boot Script 
§ Scripts are executed by startup scripts on images distributed 

with gem5 
§  Files are read from *host* system after booting 
§  Written into simulated file system 
§  Executed like a shell script 

#!/bin/sh



# Wait for system to calm down

sleep 10



# Take a checkpoint in 100000 ns

m5 checkpoint 100000



# Reset the stats

m5 resetstats



# Run queuens

/queens 16



# Exit the simulation

m5 exit






configs/boot/queens.rcS: 
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gem5 Terminal 
§ Default output from full-system simulation is on a UART 

§  m5term is a terminal emulator that lets you connect to it 

§ Code is in src/util/term 
§  Run make in that directory and make install 

§ Binary takes two parameters 
§  ./m5term <host> <port> 

§  If you’re running it locally, use the loopback interface 
§  127.0.0.1 

§ Port number is printed when gem5 starts 
§  Tries 3456 and increments until it find a free port 
§  So if you’re running multiple copies on a single machine you might 

find 3457, 3458, … 
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Running in Full System Mode 
[/work/gem5] export LINUX_IMAGE=/tmp/linux-arm-ael.img

[/work/gem5] ./build/ARM/gem5.opt configs/example/fs.py --script=./configs/boot/queens.rcS  

gem5 Simulator System.  http://gem5.org

…

**** REAL SIMULATION ****

info: Entering event queue @ 0.  Starting simulation...

…

Writing checkpoint

info: Entering event queue @ 32358957649500.  Starting simulation...

Exiting @ tick 32358957649500 because m5_exit instruction encountered


Command Line: 

Terminal:  
[/work/gem5] ./util/term/m5term 127.0.0.1 3456

==== m5 slave terminal: Terminal 0 ====

[    0.000000] Linux version 2.6.38.8-gem5 (saidi@zeep) (gcc version 4.5.2 (Sourcery G++ Lite

[    0.000000] CPU: ARMv7 Processor [350fc000] revision 0 (ARMv7), cr=10c53c7f

…

init started: BusyBox v1.15.3 (2010-05-07 01:27:07 BST)

starting pid 331, tty '': '/etc/rc.d/rc.local'

warning: can't open /etc/mtab: No such file or directory

Thu Jan  1 00:00:02 UTC 1970

S: devpts

Thu Jan  1 00:00:02 UTC 1970

16 queens on a 16x16 board...

 Q - - - - - - - - - - - - - - -
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Restoring from Checkpoint 
[/work/gem5] ./build/ARM/gem5.opt configs/example/fs.py  --caches --l2cache \

                                                                       --cpu-type=arm_detailed   -r 1 

…

Switch at curTick count:10000

info: Entering event queue @ 32344924619000.  Starting simulation...

Switched CPUS @ tick 32344924619000

Changing memory mode to timing

switching cpus

**** REAL SIMULATION ****

info: Entering event queue @ 32344924629000.  Starting simulation...

…

Exiting @ tick 32394507487500 because m5_exit instruction encountered






Command Line: 

Terminal:  
[/work/gem5] ./util/term/m5term 127.0.0.1 3456

==== m5 slave terminal: Terminal 0 ====

16 queens on a 16x16 board...

 Q - - - - - - - - - - - - - - -

 - - Q - - - - - - - - - - - - -

 - - - - Q - - - - - - - - - - -

 - Q - - - - - - - - - - - - - -

 - - - - - - - - - - - - Q - - -

 - - - - - - - - Q - - - - - - -

…
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What output is generated? 
§ Files describing the configuration 

§  config.ini – ini formatted file that has all the objects and their  
    parameters 

§  config.json – json formatted file which is easy to parse for input into 
        other simulators (e.g. power)  

§ Statistics 
§  stats.txt – You’ve seen several examples of this 

§ Checkpoints 
§  cpt.<cycle number> -- Each checkpoint has a cycle number. The –r N 

            parameter restores the Nth checkpoint in the directory 

§ Output 
§  *.terminal – Serial port output from the simulation 
§  frames_<system> – Framebuffer output  
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DEBUGGING 
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Debugging Facilities 
§ Tracing   

§  Instruction tracing 
§  Diffing traces 

§ Using gdb to debug gem5 
§  Debugging C++ and gdb-callable functions 
§  Remote debugging 

§ Pipeline viewer 
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Tracing/Debugging 
§ printf() is a nice debugging tool 

§  Keep good print statements in code and selectively enable them 
§  Lots of debug output can be a very good thing when a problem arises 
§  Use DPRINTFs in code 
§  DPRINTF(TLB, "Inserting entry into TLB with pfn:%#x…)


§ Example flags: 
§  Fetch, Decode, Ethernet, Exec, TLB, DMA, Bus, Cache, O3CPUAll

§  Print out all flags with –debug-help


§ Enabled on the command line 
§  --debug-flags=Exec

§  --trace-start=30000

§  --trace-file=my_trace.out

§  Enable the flag Exec; start at tick 30000; Write to my_trace.out 
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Sample Run with Debugging 

22:44:28 [/work/gem5] ./build/ARM/gem5.opt --debug-flags=Decode--trace-start=50000 --trace-
file=my_trace.out configs/example/se.py  -c tests/test-progs/hello/bin/arm/linux/hello 

…

**** REAL SIMULATION ****

info: Entering event queue @ 0.  Starting simulation...

Hello world!

hack: be nice to actually delete the event here

Exiting @ tick 3107500 because target called exit()


Command Line: 

my_trace.out: 

2:44:47 [ /work/gem5] head m5out/my_trace.out 

  50000: 
system.cpu: 
Decode: 
Decoded cmps instruction: 
0xe353001e

  50500: 
system.cpu: 
Decode: 
Decoded ldr instruction: 
0x979ff103

  51000: 
system.cpu: 
Decode: 
Decoded ldr instruction: 
0xe5107004

  51500: 
system.cpu: 
Decode: 
Decoded ldr instruction: 
0xe4903008

  52000: 
system.cpu: 
Decode: 
Decoded addi_uop instruction: 
0xe4903008

  52500: 
system.cpu: 
Decode: 
Decoded cmps instruction: 
0xe3530000

  53000: 
system.cpu: 
Decode: 
Decoded b instruction: 
0x1affff84

  53500: 
system.cpu: 
Decode: 
Decoded sub instruction: 
0xe2433003

  54000: 
system.cpu: 
Decode: 
Decoded cmps instruction: 
0xe353001e

  54500: 
system.cpu: 
Decode: 
Decoded ldr instruction: 
0x979ff103
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Adding Your Own Flag 
§ Print statements put in source code 

§  Encourage you to add ones to your models or contribute ones you 
find particularly useful 

§ Macros remove them from the gem5.fast binary 
§  There is no performance penalty for adding them 
§  To enable them you need to run gem5.opt or gem5.debug


§ Adding one with an existing flag 
§  DPRINTF(<flag>, “normal printf %s\n”, “arguments”); 


§ To add a new flag add the following in a Sconscript

§  DebugFlag(‘MyNewFlag’)

§  Include corresponding header, e.g. #include “debug/

MyNewFlag.hh”
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Instruction Tracing 
§ Separate from the general debug/trace facility 

§  But both are enabled the same way  

§ Per-instruction records populated as instruction executes 
§  Start with PC and mnemonic 
§  Add argument and result values as they become known  

§ Printed to trace when instruction completes 
§ Flags for printing cycle, symbolic addresses, etc.  

2:44:47 [ /work/gem5] head m5out/my_trace.out 

50000:  
T0 : 0x14468 
:   cmps   r3, #30          
: IntAlu :  D=0x00000000   

50500:  
T0 : 0x1446c    
:   ldrls   pc, [pc, r3 LSL #2] 
: MemRead :  D=0x00014640 A=0x14480

51000:  
T0 : 0x14640    
:   ldr   r7, [r0, #-4]      
: MemRead :  D=0x00001000 A=0xbeffff0c

51500:  
T0 : 0x14644.0  
:   ldr   r3, [r0] #8        
: MemRead :  D=0x00000011 A=0xbeffff10

52000: 
T0 : 0x14644.1  
:   addi_uop   r0, r0, #8    
: IntAlu :  D=0xbeffff18

52500: 
T0 : 0x14648    
:   cmps   r3, #0            
: IntAlu :  D=0x00000001 

53000: 
T0 : 0x1464c    
:   bne                      
 
: IntAlu :
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Using GDB with gem5 
§ Several gem5 functions are designed to be called from GDB 

§  schedBreakCycle() – also with --debug-break 

§  setDebugFlag()/clearDebugFlag()

§  dumpDebugStatus()

§  eventqDump()

§  SimObject::find() 

§  takeCheckpoint() 
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Using GDB with gem5 
2:44:47 [/work/gem5] gdb --args ./build/ARM/gem5.opt configs/example/fs.py 

GNU gdb Fedora (6.8-37.el5)

...

(gdb) b main�
Breakpoint 1 at 0x4090b0: file build/ARM/sim/main.cc, line 40. 

(gdb) run 

Breakpoint 1, main (argc=2, argv=0x7fffa59725f8) at build/ARM/sim/main.cc



main(int argc, char **argv) 


(gdb) call schedBreakCycle(1000000) 

(gdb) continue�
Continuing. 

gem5 Simulator System�
...�
0: system.remote_gdb.listener: listening for remote gdb #0 on port 7000 

**** REAL SIMULATION ****�
info: Entering event queue @ 0. Starting simulation... 

Program received signal SIGTRAP, Trace/breakpoint trap. 
0x0000003ccb6306f7 in kill () from /lib64/libc.so.6 
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Using GDB with gem5 
(gdb) p _curTick 

$1 = 1000000 


(gdb) call setDebugFlag("Exec") 

(gdb) call schedBreakCycle(1001000) 

(gdb) continue�
Continuing. 


1000000: system.cpu T0 : @_stext+148. 1 : addi_uop r0, r0, #4 : IntAlu : D=0x00004c30 

1000500: system.cpu T0 : @_stext+152 : teqs r0, r6 : IntAlu : D=0x00000000 

Program received signal SIGTRAP, Trace/breakpoint trap. 



0x0000003ccb6306f7 in kill () from /lib64/libc.so.6 


(gdb) print SimObject::find("system.cpu")�
$2 = (SimObject *) 0x19cba130�
(gdb) print (BaseCPU*)SimObject::find("system.cpu") 

$3 = (BaseCPU *) 0x19cba130�
(gdb) p $3->instCnt�
$4 = 431 
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Diffing Traces 
§ Often useful to compare traces from two simulations 

§  Find where known good and modified simulators diverge 

§  Standard diff only works on files (not pipes) 

§  …but you really don’t want to run the simulation to completion first 

§  util/rundiff

§  Perl script for diffing two pipes on the fly 

§  util/tracediff

§  Handy wrapper for using rundiff to compare gem5 outputs 
§  tracediff “a/gem5.opt|b/gem5.opt” –debug-flags=Exec


§  Compares instructions traces from two builds of gem5 
§  See comments for details 
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Advanced Trace Diffing 
§ Sometimes if you run into a nasty bug it’s hard to compare 

apples-to-apples traces 
§  Different cycles counts, different code paths from interrupts/timers 

§ Some mechanisms that can help: 
§  -ExecTicks  don’t print out ticks 
§  -ExecKernel  don’t print out kernel code 
§  -ExecUser  don’t print out user code 
§  ExecAsid  print out ASID of currently running process 

§ State trace 
§  PTRACE program that runs binary on real system and compares 

cycle-by-cycle to gem5 
§  Supports ARM, x86, SPARC 
§  See wiki for more information 
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Checker CPU 
§ Runs a complex CPU model such as the O3 model in tandem 

with a special Atomic CPU model  
§ Checker re-executes and compares architectural state for 

each instruction executed by complex model at commit 
§ Used to help determine where a complex model begins 

executing instructions incorrectly in complex code 

§ Checker cannot be used to debug MP or SMT systems 
§ Checker cannot verify proper handling of interrupts 
§ Certain instructions must be marked unverifiable i.e. “wfi”  
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Remote Debugging 
./build/ARM/gem5.opt configs/example/fs.py 

gem5 Simulator System

...

command line: ./build/ARM/gem5.opt configs/example/fs.py

Global frequency set at 1000000000000 ticks per second

info: kernel located at: /dist/binaries/vmlinux.arm 

Listening for system connection on port 5900

Listening for system connection on port 3456

0: system.remote_gdb.listener: listening for remote gdb #0 on port 7000 
info: Entering event queue @ 0. Starting simulation...
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Remote Debugging 
GNU gdb (Sourcery G++ Lite 2010.09-50) 7.2.50.20100908-cvs Copyright (C) 
2010 Free Software Foundation, Inc.�
...�
(gdb) symbol-file /dist/binaries/vmlinux.arm 

Reading symbols from /dist/binaries/vmlinux.arm...done. 

(gdb) set remote Z-packet on�
(gdb) set tdesc filename arm-with-neon.xml�
(gdb) target remote 127.0.0.1:7000 

Remote debugging using 127.0.0.1:7000�
cache_init_objs (cachep=0xc7c00240, flags=3351249472) at mm/slab.c:2658 

(gdb) step�
sighand_ctor (data=0xc7ead060) at kernel/fork.c:1467�
(gdb) info registers 

r0  0xc7ead060 
-940912544 

r1  0x5201312 

r2  0xc002f1e4 
-1073548828 

r3  0xc7ead060 
-940912544 

r4  0x00 

r5  0xc7ead020 
-940912608 

…
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Python Debugging 
§  It is possible to drop into the python interpreter (-i flag) 

§  This currently happens after the script file is run  

§  If you want to do this before objects are instantiated, remove  
them from script 
§  It is possible to drop into the python debugger (--pdb flag)  
§  Occurs just before your script is invoked  
§  Lets you use the debugger to debug your script code 

§ Code that enables this stuff is in src/python/m5/main.py  
§  At the bottom of the main function  
§  Can copy the mechanism directly into your scripts, if in the wrong 

place for you needs  
§  import pdb 

§  pdb.set_trace() 
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O3 Pipeline Viewer 
Use --debug-flags=O3PipeView and util/o3-pipeview.py
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MEMORY SYSTEM 
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Goals 
§ Model a system with heterogeneous applications, running on 

a set of heterogeneous processing engines, using 
heterogeneous memories and interconnect 
§  CPU centric: capture memory system behaviour accurate enough 
§  Memory centric: Investigate memory subsystem and interconnect 

architectures 

Interconnect 

Processor Processor 
Processor 

CPU 

Video 
backend 

Video 
decoder GPU GPU 

GPU 
GPU 

DMA 

DRAM DRAM 
DRAM 

3D-DRAM SRAM NAND NAND 
PCM STT-RAM 

Interconnect 



72 

Goals, contd. 
§ Two worlds... 

§  Computation-centric simulation 
§  e.g. SimpleScalar, Simics, Asim etc 
§ More behaviourally oriented, with ad-hoc ways of describing 

parallel behaviours and intercommunication 
§  Communication-centric simulation 

§  e.g. SystemC+TLM2 (IEEE standard) 
§ More structurally oriented, with parallelism and interoperability as 

a key component 

§  ...gem5 striking a balance 
§  Easy to extend (flexible) 
§  Easy to understand (well defined) 
§  Fast enough (to run full-system simulation at MIPS) 
§  Accurate enough (to draw the right conclusions) 
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Ports, Masters and Slaves 
§ MemObjects are connected through master and slave ports 
§ A master module has at least one master port, a slave 

module at least one slave port, and an interconnect module 
at least one of each 
§  A master port always connects to a slave port 
§  Similar to TLM-2 notation 

CPU 

memory0 

bus 

memory1 

Master 
module Interconnect 

module 

Slave module 

Slave port Master port 

I$ 

D$ 
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Requests & Packets 
§ Protocol stack based on Requests and Packets 

§  Uniform across all MemObjects (with the exception of Ruby) 
§  Aimed at modelling general memory-mapped interconnects 
§  A master module, e.g. a CPU, changes the state of a slave module, 

e.g. a memory through a Request transported between master ports 
and slave ports using Packets 

 

CPU memory 

Request req(addr, size, flags, masterId); 
Packet* req_pkt = new Packet(req, MemCmd::ReadReq); 
... 
 
 
 
 
 
 
 
... 
delete resp_pkt; 

if (req_pkt->needsResponse()) { 
   req_pkt->makeResponse(); 
} else { 
   delete req_pkt; 
} 
... 
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Requests & Packets 
§ Requests contain information persistent throughout a 

transaction 
§  Virtual/physical addresses, size 
§ MasterID uniquely identifying the module behind the request 
§  Stats/debug info: PC, CPU, and thread ID 

§ Requests are transported as Packets 
§  Command (ReadReq, WriteReq, ReadResp, etc.) (MemCmd) 
§  Address/size (may differ from request, e.g., block aligned cache miss) 
§  Pointer to request and pointer to data (if any) 
§  Source & destination port identifiers (relative to interconnect) 

§  Used for routing responses back to the master 
§  Always follow the same path 

§  SenderState opaque pointer 
§  Enables adding arbitrary information along packet path 
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Functional transport interface 
§  On a master port we send a request packet using sendFunctional 
§  This in turn calls recvFunctional on the connected slave port 
§  For a specific slave port we implement the desired functionality by 

overloading recvFunctional 
§  Typically check internal (packet) buffers against request packet 
§  For a slave module, turn the request into a response (without altering state) 
§  For an interconnect module, forward the request through the appropriate 

master port using sendFunctional 
§  Potentially after performing snoops by issuing sendFunctionalSnoop 

CPU memory 

masterPort.sendFunctional(pkt); 
// packet is now a response 
 

MySlavePort::recvFunctional(PacketPtr pkt) 
{ 
   ... 
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Atomic transport interface 
§  On a master port we send a request packet using sendAtomic 
§  This in turn calls recvAtomic on the connected slave port 
§  For a specific slave port we implement the desired functionality by 

overloading recvAtomic 
§  For a slave module, perform any state updates and turn the request into a 

response 
§  For an interconnect module, perform any state updates and forward the 

request through the appropriate master port using sendAtomic 
§  Potentially after performing snoops by issuing sendAtomicSnoop 

§  Return an approximate latency 

CPU memory 

Tick latency = masterPort.sendAtomic(pkt); 
// packet is now a response 
 

MySlavePort::recvAtomic(PacketPtr pkt) 
{ 
   ... 
   return latency; 
} 
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Timing transport interface 
§  On a master port we try to send a request packet using sendTiming 
§  This in turn calls recvTiming on the connected slave port 
§  For a specific slave port we implement the desired functionality by 

overloading recvTiming 
§  Perform state updates and potentially forward request packet 
§  For a slave module, typically schedule an action to send a response at a later time 

§  A slave port can choose not to accept a request packet by returning false 
§  The slave port later has to call sendRetry to alert the master port to try again 

CPU memory 

bool success = masterPort.sendTiming(pkt); 
if (success) { 
   // request packet is sent 
   ... 
} else { 
   // failed, will get 
   // retry from slave port 
   ... 
} 
 

MySlavePort::recvTiming(PacketPtr pkt) 
{ 
   assert(pkt->isRequest()); 
   ... 
   return true/false; 
} 
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Timing transport interface (cont’d) 
§  Responses follow a symmetric pattern in the opposite direction 
§  On a slave port we try to send a response packet using sendTiming 
§  This in turn calls recvTiming on the connected master port 
§  For a specific master port we implement the desired functionality by 

overloading recvTiming 
§  Perform state updates and potentially forward response packet 
§  For a master module, typically schedule a succeeding request 

§  A master port can choose not to accept a response packet by returning 
false 
§  The master port later has to call sendRetry to alert the slave port to try again 

CPU memory 

bool success = slavePort.sendTiming(pkt); 
if (success) { 
   // response packet is sent 
   ... 
} else { ... 

MyMasterPort::recvTiming(PacketPtr pkt) 
{ 
   assert(pkt->isResponse()); 
   ... 
   return true/false; 
} 
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Ruby for Networks and Coherence 
§ As an alternative to the conventional memory system gem5 

also integrates Ruby 
§ Create networked interconnects based on domain-specific 

language (SLICC) for coherence protocols 
§ Detailed statistics 

§  e.g., Request size/type distribution, state transition frequencies, etc... 

§ Detailed component simulation 
§  Network (fixed/flexible pipeline and simple) 
§  Caches (Pluggable replacement policies) 

§ Runs with Alpha and X86 
§  Limited support for functional accesses 
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Caches 
§ Single cache model with several components: 

§  Cache: request processing, miss handling, coherence 
§  Tags: data storage and replacement (LRU, IIC, etc.) 
§  Prefetcher: N-Block Ahead, Tagged Prefetching, Stride Prefetching 
§  MSHR & MSHRQueue: track pending/outstanding requests 

§  Also used for write buffer 
§  Parameters: size, hit latency, block size, associativity, number of 

MSHRs (max outstanding requests) 
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Coherence protocol 
§ MOESI bus-based snooping protocol 

§  Support nearly arbitrary multi-level hierarchies at the expense of 
some realism 

§ Does not enforce inclusion 
§ Magic “express snoops” propagate upward in zero time 

§  Avoid complex race conditions when snoops get delayed 
§  Timing is similar to some real-world configurations 

§  L2 keeps copies of all L1 tags 
§  L2 and L1s snooped in parallel 
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Buses & Bridges 
§ Create rich system interconnect topologies using a simple 

bus model and bus bridge 
§ Buses do address decoding and arbitration 

§  Distributes snoops and aggregates snoop responses 
§  Routes responses 
§  Configurable width and clock speed 

§ Bridges connects two buses 
§  Queues requests and forwards them 
§  Configurable amount of queuing space for requests and responses 



84 

Memory  
§ All memories in the system inherit from AbstractMemory 

§  Encapsulates basic “memory behaviour”: 
§  Has an address range with a start and size 
§  Can perform a zero-time functional access and normal access 

§ SimpleMemory is currently the only subclass 
§  Multi-port memory controller 
§  Fixed-latency memory (possibly with a variance) 
§  Infinite throughput 
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Work in progress 
§ 4-phase handshakes like TLM-2 

§  Begin/end request/response 
§  Enable straight forward modeling of contention and arbitration 
§  Add associated library of general arbiters for shared buses and 

memory controllers 

§ Communication monitor 
§  Insert as a structural component where stats are desired 
§  Captures a wide range of communication stats: bandwidth, latency, 

inter-transaction time, outstanding transactions etc 
§  Can be found on the review board 

§ Traffic generators 
§  Inject requests based on probabilistic state-transition diagrams 
§  Black-box IP models or “predictable” scenarios for memory system 

testing and performance validation 
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Instantiating and Connecting Objects 
class BaseCPU(MemObject):

    icache_port = MasterPort("Instruction Port")

    dcache_port = MasterPort("Data Port")

    …



class BaseCache(MemObject):

    cpu_side = SlavePort("Port on side closer to CPU")

    mem_side = MasterPort("Port on side closer to MEM")

    ...



class Bus(MemObject):

    slave = VectorSlavePort("vector port for connecting masters")

    master = VectorMasterPort("vector port for connecting slaves")

    …



system.cpu.icache_port = system.icache.cpu_side

system.cpu.dcache_port = system.dcache.cpu_side



system.icache.mem_side = system.l2bus.slave

system.dcache.mem_side = system.l2bus.slave

…
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CPU MODELS 
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CPU Models – System Level View 
§ CPU Models are design to be “hot pluggable” with arbitrary 

ISA and memory systems 

CPU 

Decoder 

TLB 

Faults 

Interrupts 

AtomicSimpleCPU 

TimingSimpleCPU 

InOrder CPU 

O3 CPU 

Memory 

Classic 

Ruby 
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Simple CPU Models (1) 
§ Models Single-Thread 1 CPI Machine 
§ Two Types:  

§  AtomicSimpleCPU 
§  TimingSimpleCPU 

§ Common Uses:  
§  Fast, Functional Simulation 

§  2.9 million and 1.2 million instructions per second on the twolf 
benchmark  

§  Warming Up Caches  
§  Studies that do not require detailed CPU modeling  
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Atomic Simple CPU 
§ On every CPU tick() perform 

all operations for an 
instruction 

§ Memory accesses use 
atomic methods 

§ Fastest functional simulation 
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Timing Simple CPU 
§ Memory accesses use timing 

path 

§ CPU waits until memory 
access returns 

§ Fast, provides some level of 
timing 
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Detailed CPU Models 
§ Parameterizable Pipeline Models w/SMT support 
§ Two Types 

§  InOrderCPU 
§  O3CPU 

§  “Execute in Execute”, detailed modeling 
§  Roughly an order-of-magnitude slower 

§  ~200K instructions per second on twolf 
§  Models the timing for each pipeline stage  
§  Forces both timing and execution of simulation to be accurate 
§  Important for Coherence, I/O, Multiprocessor Studies, etc 

§ Both only support some architecutres 
§  See Status Matrix on gem5.org for up-to-date info 
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InOrder CPU Model 
§ Default 5-stage pipeline  

§  Fetch, Decode, Execute, Memory, Writeback  

§ Key Resources  
§  Cache, Execution, BranchPredictor, etc. 
§  Pipeline stages 

§ Pipeline stages interact with Resource Pool 
§ Pipeline defined through Instruction Schedules  

§  Each instruction type defines what resources they need in a particular 
stage  

§  If an instruction can’t complete all it’s resource requests in one stage, 
it blocks the pipeline  
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Out-of-Order (O3) CPU Model 
§ Default 7-stage pipeline 

§  Fetch, Decode, Rename, Issue, Execute, Writeback, Commit 
§  Model varying amount of stages by changing the delay between them 

§  For example: fetchToDecodeDelay 

§ Key Resources 
§  Physical Registers, IQ, LSQ, ROB, Functional Units 
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ThreadContexts 
§  Interface for accessing total architectural state of a single 

thread 
§  PC, register values, etc. 

§ Used to obtain pointers to key classes 
§  CPU, process, system, ITB, DTB, etc.  

§ Abstract base class 
§  Each CPU model must implement its own derived ThreadContext 
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Instruction Decoding 

Memory 

Byte Byte Byte Byte Byte Byte Byte Byte 

Predecoder 

ExtMachineInst 

Decoder 

Context 

StaticInst Macro-op 
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StaticInst 
§ Represents a decoded instruction 

§  Has classifications of the inst 
§  Corresponds to the binary machine inst 
§  Only has static information 

§ Has all the methods needed to execute an instruction 
§  Tells which regs are source and dest 
§  Contains the execute() function 
§  ISA parser generates execute() for all insts 
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DynInst 
§ Dynamic version of StaticInst 

§  Used to hold extra information detailed CPU models 
§  BaseDynInst 

§  Holds PC, Results, Branch Prediction Status 
§  Interface for TLB translations 

§ Specialized versions for detailed CPU models 
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ISA Description Language 
§ Custom domain-specific language 

§ Defines decoding & behavior of ISA 

§ Generates C++ code 
§  Scads of StaticInst subclasses 
§  decodeInst() function 

§ Maps machine instruction to StaticInst instance 
§  Multiple scads of execute() methods 

§  Cross-product of CPU models and StaticInst subclasses 
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COMMON TASKS 
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Common Tasks 
§ Adding a statistic 
§ Parameters and SimObject 
§ Creating an SimObject 

§  Configuration 
§  Initialization 
§  Serialization 
§  Events 

§  Instrumenting a benchmark 
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Adding a statistic 
§ Add a statistic to the atomic CPU model 

§  Track number of instruction committed in user mode 

§ Number of statistics classes in gem5 
§  Scalar, Average, Vector, Formula, Histogram, Distribution, Vector Dist 

§ We’ll choose a Scalar and a Formula 
§  Count number of instructions in user mode 
§  Formula to print percentage out of total 
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Add Stats to src/cpu/simple/base.hh 
 // statistics

    virtual void regStats();

    virtual void resetStats();



    // number of simulated instructions

    …

    Stats::Scalar numInsts;

    …

    Stats::Scalar numOps;

    … 

    Stats::Scalar numUserInsts;

    Stats::Formula percentUserInsts;


} 
•  Controls registering the statistics when the 

simulation starts. 
•  All stats must be registered in regStats() as they 

can’t be dynamically added during the running 
simulation. 

•  resetStats() is called when the stats are zerod; You 
normally don’t need to do anything for this. 

  

} 
•  numUserInsts will contain count of 

instructions executed in user mode 
•  percentUserInsts will be numUserInsts/

numInsts 
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Add Stats to src/cpu/simple/base.cc 
  numInsts

        .name(name() + ".committedInsts")

        .desc("Number of instructions committed")

        ;



 numUserInsts

        .name(name() + ".committedUserInsts")

        .desc("Number of instructions committed”

                    “ while in use code”)

        ;    

 

   percentUserInsts

        .name(name() + ”.percentUserInsts")

        .desc(”Percent of total of instructions”

                    “ committed while in use code”)

        ;    

…�
 idleFraction = constant(1.0) - notIdleFraction;

 percentUserInsts = numUserInsts/numInsts;


} •  Give the stats we created in the 
header file a name and a 
description 

•  Other stat types (e.g. vector) 
need a length here 

} •  Formulas will be evaluated 
when statistics are output  
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Accumulate numUserInsts 
 void countInst()

    {   

        if (!curStaticInst->isMicroop() || curStaticInst->isLastMicroop()) {       

            numInst++;

            numInsts++;

            if (TheISA::inUserMode(tc))                                            

                numUserInsts++;                                                    

        } 

    …

    }
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Look at the results 
[/work/gem5] ./build/ARM/gem5.opt configs/example/fs.py --script=./configs/boot/halt.rcS  

gem5 Simulator System.  http://gem5.org

…

**** REAL SIMULATION ****

info: Entering event queue @ 0.  Starting simulation...

…

Exiting @ tick 2332316587000because m5_exit instruction encountered


Command Line: 

Stats:  

[/work/gem5]  grep Insts m5out/stats.txt

system.cpu.committedInsts    
     59262896 
# Number of instructions committed

system.cpu.committedUserInsts     6426560 
# Number of instructions committed while in 


 
 
 
 
    user code

system.cpu.percentUserInsts 
     0.108442 
# Percent of instructions committed  while in 



 
 
 
 
    user code
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Parameters and SimObjects 
§ Parameters to SimObjects are synthesized from Python 

structures that represent them 
§  This example is from src/dev/arm/Realview.py 

class Pl011(Uart):

    type = 'Pl011'

    gic = Param.Gic(Parent.any, "Gic to use for interrupting")

    int_num = Param.UInt32("Interrupt number that connects to GIC")

    end_on_eot = Param.Bool(False, "End the simulation when a EOT is received")

    int_delay = Param.Latency("100ns", "Time between action and interrupt generation")


 Python class name 
 Python base class 
C++ class  

Parameter type   Parameter default  Parameter Description 
 Parameter name 
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Auto-generated Header file 
#ifndef __PARAMS__Pl011__

#define __PARAMS__Pl011__



class Pl011;



#include <cstddef>

#include "base/types.hh”

#include "params/Gic.hh"

##include "base/types.hh"



#include "params/Uart.hh"



struct Pl011Params

    : public UartParams

{

    Pl011 * create();

    uint32_t int_num;

    Gic * gic;

    bool end_on_eot;

    Tick int_delay;

};

#endif // __PARAMS__Pl011__


class Pl011(Uart):

    type = 'Pl011'

    gic = Param.Gic(Parent.any, …)

    int_num = Param.UInt32(…)

    end_on_eot = Param.Bool(False, "End …)

    int_delay = Param.Latency("100ns", "Time …")
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How Parameters are used in C++ 

Pl011::Pl011(const Pl011Params *p)

    : Uart(p), control(0x300), fbrd(0), ibrd(0), lcrh(0), ifls(0x12), imsc(0),

      rawInt(0), maskInt(0), intNum(p->int_num), gic(p->gic),

      endOnEOT(p->end_on_eot), intDelay(p->int_delay), intEvent(this)

{

    pioSize = 0xfff;

}





You can also access parameters through params() accessor on SimObject 
incase you have parameters that aren’t stored in a SimObject directly. 

src/dev/arm/pl011.cc:  
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Creating a SimObject 
§ Derive Python class from Python SimObject 

§  Defines parameters, ports and configuration 
§  Parameters in Python are automatically turned into C++ struct and 

passed to C++ object 
§  Add Python file to SConscript 

§  Or, place it in an existing SConscript 

§ Derive C++ class from C++ SimObject 
§  Defines the simulation behavior 
§  See src/sim/sim_object.{cc,hh} 
§  Add C++ filename to SConscript in directory of new object 
§  Need to make sure you have a create function for the object 

§  Look at the bottom of an existing object for info 

§ Recompile 
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SimObject Initialization 
§ SimObjects go through a sequence of initialization 

1.  C++ object construction 
§  Other SimObjects in the system may not be constructed yet 

2.  SimObject::init() 
§  Called on every object before the first simulated cycle 
§  Useful place to put initialization that requires other SimObjects  

3.  SimObject::initState() 
§  Called on every SimObject when not restoring from a checkpoint 

4.  SimObject::loadState() 
§  Called on every SimObject when restoring from a checkpoint 
§  By default the implementation calls SimObject::unserialize() 



112 

Creating/Using Events 
§ One of the most common things in an event driven simulator 

is scheduling events 
§  Declaring events and handlers is easy: 

§  Scheduling them is easy too: 

   /** Handle when a timer event occurs */

void timerHappened();

EventWrapper<ClassName, &ClassName::timerHappend> timerEvent; 




/** something that requires me to schedule an event  at time t**/

if (timerEvent.scheduled())

     timerEvent.reschedule(curTick() + t);

else

     timerEvent.schedule(curTick() + t);
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Checkpointing SimObject State 
§  If you have state that needs to be saved when a checkpoint is 

created you need to serialize or marshal that data 
§ When a checkpoint happens SimObject::drain() is called 

§  Objects need to return if they’re OK to drain or not 
§  Should always be OK in atomic mode 
§  In timing mode you stop issuing transactions and complete 

outstanding 

§ When every object is ok to checkpoint SimObject::serialize() 
§  Save necessary state (not parameters you get from config system) 
§  SERIALIZE_*() macros help 

§ To restore the state SimObject::loadState() is called 
§  This calls SimObject::unserialize() by default 
§  UNSERIALIZE_*() macros  
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Checkpointing Timers and Objects 
§ Checkpointing events, objects are slightly more difficult 

§  To checkpoint an object you can use (UN)SERIALIZE_OBJPTR()  
§  Save object name 

§  To save an event you need to check if it’s scheduled 

    bool is_in_event = timerEvent.scheduled();

    SERIALIZE_SCALAR(is_in_event);



    Tick event_time;

    if (is_in_event){

        event_time = timerEvent.when();

        SERIALIZE_SCALAR(event_time);

    }
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Instrumenting a Benchmark 
§ You can add instructions that tell simulator to take action 

inside the binary 
§  We went through some examples with checkpointing and stats reset 

§ Other options are 
§  m5_initparam() – get integer passed on command line –initparam= 
§  m5_reset_stats(initial_delay, repeat) – reset the stats to 0 
§  m5_dump_stats(initial_delay, repeat) – dump stats to text file 
§  m5_work_begin(work_id, thread_id)  -- begin a item sample 
§  m5_work_end (work_id, thread_id)  -- end a item sample 

§  Average time complete work_ids will be printed in stats file 
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CONFIGURATION 
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Simulator Configuration 
§ Config files that come with gem5 are meant to be examples 

§  Certainly not meant to expose every parameter you would want to 
change 

§ Configuration files are Python 
§  You can programmatically create objects 
§  Put them into a hierarchy 
§  gem5 will instantiate all the Python SimObjects you create and attach 

them together 

§ Good news is you can do anything you want for configuration 
§  Possibly also bad news 
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SimObject Parameters 
§ Parameters can be 

§  Scalars – Param.Unsigned(5), Param.Float(5.0) 
§  Arrays  -- VectorParam.Unsigned([1,1,2,3]) 
§  SimObjects – Param.PhysicalMemory(…) 
§  Arrays of SimObjects – VectorParam.PhysicalMemory(Parent.any) 
§  Range – Param.Range(AddrRange(0,Addr.max)) 

§ Some are converted from strings: 
§  Latency – Param.Latency(’15ns’) 
§  Frequency – Param.Frequency(‘100MHz’) 

§ Others are converted to bytes 
§  MemorySize – Param.MemorySize(‘1GB’) 

§ Few more complex types: 
§  Time – Param.Time(‘Mon Mar 25 09:00:00 CST 2012’) 
§  Ethernet Address – Param.EthernetAddr(“90:00:AC:42:45:00”) 
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A Simple Example 
import m5

from m5.objects import *



class MyCache(BaseCache):

    assoc = 2

    block_size = 64

    latency = '1ns'

    mshrs = 10

    tgts_per_mshr = 5



class MyL1Cache(MyCache):

    is_top_level = True



cpu = TimingSimpleCPU(cpu_id=0)

cpu.addTwoLevelCacheHierarchy(MyL1Cache(size = '128kB'),

                                                                  MyL1Cache(size = '256kB'),

                                                                  MyCache(size = '2MB', latency='10ns'))



system = System(cpu = cpu,

                physmem =SimpleMemory(),

                membus = Bus())
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A Simple Example Part 2 

root.system.cpu.workload = LiveProcess(cmd = 'hello’, executable = binpath('hello'))



system.system_port = system.membus.slave

system.physmem.port = system.membus.master



# create the interrupt controller

cpu.createInterruptController()

cpu.connectAllPorts(system.membus)

cpu.clock = '2GHz'



root = Root(full_system=False, system = system)







# instantiate configuration

m5.instantiate()



# simulate until program terminates

exit_event = m5.simulate(m5.MaxTick)
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Two Classes of Configuration 
§ Python files in the src directory are “built” into the executable 

§  If you change one of these you need to recompile 
§  Or, set the M5_OVERRIDE_PY_SOURCE env variable to True 

§ Other python files aren’t built into the binary 
§  They can be changed and no recompiling is needed 
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CONCLUSION 
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Summary 
§ Basics of using gem5 

§  High-level features 
§  Running simulations 
§  Debugging them 

§ Under the hood 
§  Memory system 
§  CPU Models 

§ Common Tasks 
§  Adding a statistics 
§  SimObject Parameters 
§  Creating a SimObject 
§  Instrumenting a Benchmark 
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Keep in Touch 
§  Please check out the website: 

§  Subscribe to the mailing lists 
§  gem5-users – Questions about using/running gem5 
§  gem5-dev – Questions about modifying the simulator 

§  Submit a patch to our ReviewBoard  
§  http://reviews.gem5.org 

§  Read & Contribute to the wiki 
§  http://www.gem5.org 

§ We hope you found this tutorial and will find gem5 useful 

§ We’d love to work with you to make gem5 more useful to the 
community 

§  Thank you 


