Simulating Systems
not Benchmarks

HIPEAC Computing Systems Week 2012

Ali Saidi, Andreas Hansson

&

£ §

3 C’(.Ure &

IHld® The Arch' \No(\
\"‘.4 " \

. .
. 5\C0 _
- D\%‘/c ‘ The Architecture for the Digital VWorld® ARM

Welcome

= Glad you're here!

= gemd has been a multi-year effort
= ARM is giving this tutorial today
= Bit ARM-ISA focused
= Borrowing material from previous gem5 tutorials
= Many institutions and companies have contributed to the simulator
= Encourage you to do the same

= This tutorial is for you
= Please ask questions when you have them

cembdD

Goals and Timeline

= [ntroduction to the gem5 simulator

= 09:30 - 11:00
= 11:00 — 11:30 -- Break
= 11:30 — 13:00

cembdD

Outline Part 1

= |ntroduction
= Why a system simulator?
= Where it comes from?
= What it can do?
= High-level features
= Basics
= Compiling
= Running
= Using the simulator
= Checkpoints
= Sampling
= |nstrumenting
= Results
= Debugging
= Trace
= Debugging the simulator
= Debugging the execution 95

cembdD

Outline Part 2

= Memory System
= QOverview
= Ports
= Transport interfaces
= Caches and Coherence
= |nterconnect components

= CPU Models
= Simple
= |InOrder
= Qut-of-order

= Common Tasks
= Adding a statistic, SimObject, or Instruction

= Conclusion

cembdD

INTRODUCTION

cembdD

Importance of System Simulation

= \Why make it so complicated when | only care about
= Benchmark run time
= CPU performance
= |nterconnect latencies
= DRAM controller scheduling

= CPU behavior depends on the memory system, and the
behavior of the memory system depends on the CPUs

= Complex interactions on many different levels, application, JIT, OS,
caches, interconnect, memory controllers, devices

= Gluing the pieces together, e.g. using traces, does not capture these
dependencies.

= Solution: A system simulator gs

cembdD

System Simulator
= Built from a combination of M5 and GEMS

= |n doing so we lost all capitalization: gem5

= Self-contained simulation framework
= Does not rely on many simulators glued together
= Although you're welcome to glue things together
= Built on a discrete-event simulation kernel

= Rich availability of modules in the framework
= Qut of the box it can model entire systems
= Not just CPU intensive apps
= Not just memory system with traces
= Not DRAM in isolation
= Not execution without 1/0O

cembdD

Why a Flexible Simulation Tool?

A
Programmer
View

Flexibility

Validation
Profilers & Model
Dynamic

Instrumentation

RTL

Accuracy 5

cembdD

Envisioned use-cases

= HW/SW performance verification

= Need performance measures of 1% order accuracy, capturing the
things that actually matter

= Early Architectural Exploration

= Need an environment where it is fast and easy to model and connect

the key architectural components of hardware platform

10

cembdD

1"

Operating Systems & Apps

Android Gingerbread

cembdD

Real Applications

N Sewe: ©

K file-/i/datasbbipage2/index.html %]

Ifile:///datarbb/pageasindex.htm!

Wel o= T
icome [file:///datarbb/pageasindex.html

Your Amason.com Todeys Oesls Gt & Wish Lists Gt Cardy

Vour Account | Help

[Wfile:///datasbb/page/index.html

o o . ¥ A Buy Sell MyeBay Commwnity Melp
Wusle & G d Wielcome! Sign in oe

@ e help | Site Ma

Al Categorie v Search Adwnced sewch
Go sewen

Categories v | Motors | Express | Stores

(]

Welcome to eBay

Shop your Favorite Categories

Don't just shop. Win!

msa" 5-Minute Off
rrCrew—r——

Get 'em before they're gone

50 000GCo0

From our Sellers

ALIAN COR

GOLD Mi

12 cembdD

Graphical Statistics

B Timeline| # call Paths| @ Functions | [Code| =< Call Graph| B Stack| % Log

6s s 8s 9s 10s 11s

@ WEEL vy (@) @R
L 4

1 :nm;x écheduler B [200% M 88.11% avg.
VIl

I-Cache Miss Rate
@I-Cache Miss Rate

I-Cache M 12,179,068
@I-Cache Hits 0 33,792
BI-Cache Misses

D-Cache O 387,378
BWD-Cache Misses W 32,844,339
@ D-Cache Hits

D-Cache Miss Rate 2
W D-Cache Miss Rate

Branch Prediction O 124,650
B Branch Mispredicts B 157,766,428
@Branch Instructions

w [system_server #693]
[ActivityManager #706]
[Binder Thread # #699]
[Binder Thread # #701]
[Binder Thread # #795]
[Binder Thread # #802]

[Compiler #698]
[er.ServerThread #704]
[PowerManagerSer #719]
[SurfaceFlinger #700]
[system_server #693]

o Currently ARM internal
[bdi-default #149] |

[events/0 #6]
[Flush-8:0 #674]
[ksoftirqd/0 #3]
[sync_supers #147]

cembdD

Multiple System Simulations

Simulated Ethernet #
\ erver

cembdD

15

Main Goals

Open source tool focused on architectural modeling

= Flexibility
= Multiple CPU models, memory systems, and device models
= Across the speed vs. accuracy spectrum

= Availability
= For both academic and corporate researchers
= No dependence on proprietary code
= BSD license

= Collaboration
= Combined effort of many with different specialties
= Active community leveraging collaborative technologies

¢

cembdD

High-level Features

= Configurable CPU models
= Simple one-IPC (SimpleAtomic/Timing)
= Detailed in-order execution (InOrder)
= Detailed out-of-order execution (03)

= Pluggable memory system

= Stitch memory system together out of components
= Use Wisconsin’s Ruby

= Device Models
= Enough device models to boot Linux

= Boot real operating systems
= Linux, Android

= Many ISAs

16

cembdD

What we would like gem5 to be

= Something that spares you the pain we've been through
= A community resource

= Modular enough to localize changes
= Contribute back, and spare others some pain

= A path to reproducible/comparable results
= A common platform for evaluating ideas

= Simulator of choice for performance exploration

17 cembdD

Where did it come from

THE UNIVERSITY

WISCONSIN

MADISON

18

19

What is new?

= |f you haven't looked at gem5 recently
= ARM & x86 support

Re-worked memory system with TLM-like semantics
Integration with GEMS

SE/FS merged together

Frame buffers and VNC

cembdD

BASICS

cembdD

21

Building gem>3

= Platforms
= Linux, BSD, MacOS X, Solaris, etc
= 64 bit machines help quite a bit

= Tools
= GCC/G++ 4.2+ (or clang 2.9+)
= Python 2.4+
= SCons 0.98.1+
= http://www.scons.org
= SWIG 1.3.40+
= http://www.swig.org

= |f using Ubuntu install

= apt-get install python-dev scons m4 build-essential g++

swig zlib-dev

¢

cembdD

Compile Targets

= build/<isa>/<binary>

= [SAS:
= ARM, ALPHA, MIPS, SPARC, POWER, X86

= Binaries
= gemS.debug debug build, symbols, tracing, assert
= gemS.opt optimized build, symbols, tracing, assert
= gemS.fast optimized build, no debugging, no symbols,
no tracing, no assertions
= gemS.prof gemb>.fast + profiling support

22 cembdD

23

Sample Compile

21:36:01 [/work/gemb5] scons build/ARM/gemb5.opt —j4
scons: Reading SConscript files ...
Checking for leading underscore in global variables...(cached) yes
Checking for C header file Python.h... (cached) yes
Checking for C library dl... (cached) yes
Checking for C library python?2.7... (cached) yes
Checking for accept(0,0,0) in C++ library None... (cached) yes
Checking for zlibVersion() in C++ library z... (cached) yes
Checking for clock_nanosleep(0,0,NULL,NULL) in C library None... (cached) no
Checking for clock_nanosleep(0,0,NULL,NULL) in C library rt... (cached) no
Can't find library for POSIX clocks.
Checking for C header file fenv.h... (cached) yes
Reading SConsopts
Building in /work/gem5/build/ARM
Using saved variables file /work/gemb5/build/variables/ARM
Generating LALR tables
WARNING: 1 shift/reduce conflict
scons: done reading SConscript files.
scons: Building targets ...

[CXX] ARM/sim/main.cc ->.0

[TRACING] -> ARM/debug/Faults.hh

[GENERATE] -> ARM/arch/interrupts.hh

[GENERATE] -> ARMN/arch/isa,_traits.hh

[GENERATE] -> ARMN/arch/microcode_rom.hh

[CFG ISA] > ARM/config/the _isa.hh

cembdD

Running Simulation

21:58:32 [/work/gemb5] ./build/ARM/gemb5.opt -h

Usage

gemb.opt [gemS options] script.py [script options]

gemb5 is copyrighted software; use the --copyright option for details.

Options

--version

--help, -h
--build-info, -B
--copyright, -C
--readme, -R
--outdir=DIR, -d DIR
--redirect-stdout, -r
--redirect-stderr, -e
--stdout-file=FILE
--stderr-file=FILE
--interactive, -i

--pdb

show program's version number and exit

show this help message and exit

Show build information

Show full copyright information

Show the readme

Set the output directory to DIR [Default: m5out]
Redirect stdout (& stderr, without -e) to file
Redirect stderr to file

Filename for -r redirection [Default: simout]
Filename for -e redirection [Default: simerr]

Invoke the interactive interpreter after running the
script

Invoke the python debugger before running the script

--path=PATH[:PATH], -p PATH[:PATH]

24

Prepend PATH to the system path when invoking the
script

cembdD

Running Simulation

Statistics Options

--stats-file=FILE Sets the output file for statistics [Default: stats.txt]

Configuration Options

--dump-config=FILE Dump configuration output file [Default: config.ini]

--json-config=FILE Create JSON output of the configuration [Default: config.json]

Debugging Options
--debug-break=TIME[,TIME]

Cycle to create a breakpoint
--debug-help Print help on trace flags
--debug-flags=FLAG[,FLAG]

Sets the flags for tracing (-FLAG disables a flag)
--remote-gdb-port=REMOTE_GDB_PORT

Remote gdb base port (set to O to disable listening)

Trace Options

--trace-start=TIME Start tracing at TIME (must be in ticks)
--trace-file=FILE Sets the output file for tracing [Default: cout]
--trace-ignore=EXPR Ignore EXPR sim objects

25

cembdD

gem5 has two fundamental modes

= Full system (FS)
= For booting operating systems
Models bare hardware, including devices
Interrupts, exceptions, privileged instructions, fault handlers
Simulated UART output
Simulated frame buffer output

= Syscall emulation (SE)
= For running individual applications, or set of applications on MP
= Models user-visible ISA plus common system calls
= System calls emulated, typically by calling host OS
= Simplified address translation model, no scheduling

= Now dependent on how you run the binary
= No longer need to compile different binaries

26 cembdD

27

Sample Run — Syscall Emulation

2:08:12 [/work/gemb] ./build/ARM/gemb5.opt configs/example/se.py \
-C tests/test-progs/hello/bin/arm/linux/hello

gemb5 Simulator System. http://gemb5.org
gemb is copyrighted software; use the --copyright option for details.

gemb5 compiled Mar 18 2012 21:58:16

gemb started Mar 18 2012 22:10:24

gemb executing on daystrom

command line: ./build/ARM/gemb5.opt configs/example/se.py -c tests/test-progs/hello/bin/arm/
linux/hello

Global frequency set at 1000000000000 ticks per second

0: system.remote_gdb.listener: listening for remote gdb #0 on port 7000
*xkx REAL SIMULATION * * * *

info: Entering event queue @ O. Starting simulation...

Hello world!

Exiting @ tick 3107500 because target called exit()

cembdD

Sample Run - Full System

Command Line:
22:13:19 [/work/gemb5] ./build/ARM/gemb5.opt configs/example/fs.py

info: kernel located at: /dist/binaries/vmlinux.arm.smp.fb.2.6.38.8
Listening for system connection on port 5900
Listening for system connection on port 3456
O: system.remote_gdb.listener: listening for remote gdb #0 on port 7000
info: Using bootloader at address 0x80000000

*x %k x REAL SIMULATION * * * *

info: Entering event queue @ O. Starting simulation...

warn: The clidr register always reports O caches.

warn: clidr LoUIS field of ObOO1 to match current ARM implementations.

Terminal:

22:13:19 [/work/gemb5] ./util/term/m5term 127.0.0.1 3456
==== 15 slave terminal: Terminal O ====

[0.000000] Linux version 2.6.38.8-gemb5 (saidi@zeep) (gcc version 4.5.2 (Sourcery G++ Lite
2011.03-41)) #1 SMP Mon Aug 15 21:18:38 EDT 2011

[0.000000] CPU: ARMvV7 Processor [350fcO00] revision O (ARMv7), cr=10¢53c7f

[0.000000] CPU: VIPT nonaliasing data cache, VIPT nonaliasing instruction cache
[0.000000] Machine: ARM-RealView PBX

starting pid 354, tty ": '/sbin/getty -L ttySAO 38400 vt100'

AEL login: gs

28 cembdD

29

Example Python script
(e.g. configs/example/se.py)
instantiating simulation objects
and setting their parameters

~

Python interpreter compiled
into gem5

~

Sample Run — Behind the scenes

T
—

Library of simulation
objects described in Python

Corresponding C++ simulation
objects assembled and configured
according to Python script

4

~

Actual simulation

N

cembdD

Objects

= Everything you care about is an object (C++/Python)
= Assembled using Python, simulated using C++
= Derived from SimObject base class

= Common code for creation, configuration parameters, naming,
checkpointing, etc.

= Uniform method-based APIs for object types
= CPUs, caches, memory, etc.
= Plug-compatibility across implementations
= Functional vs. detailed CPU
= Conventional vs. indirect-index cache

= Easy replication: cores, multiple systems, . . .

30

cembdD

31

Events

= Standard discrete-event timing model
= Global logical time in “ticks”
= No fixed relation to real time
= Constants in src/sim/core.hh always relate ticks to real time

= Picoseconds used in our examples
= QObijects schedule their own events

= Flexibility for detail vs. performance trade-offs
= E.g., a CPU typically schedules event at regular intervals

= Every cycle or every n picoseconds
= Won’t schedule self if stalled/idle

cembdD

32

Ports

= Used for connecting MemObjects together
= e.g. enable a CPU to issue reads/writes to a memory
= Correspond to real structural ports on system components
= e.g. CPU has an instruction and a data port
= Ports have distinct roles, and always appear in pairs
= A MasterPort is connected to a SlavePort
= Similar to TLM-2 initiator and target socket
= Send and receive function pairs transport packets
= sendAtomic() on a MasterPort calls recvAtomic() on connected SlavePort
= |[mplementation of recvAtomic is left to SlavePort subclass

= Result: class-specific handling with arbitrary connections and only a single

virtual function call
MasterPort SlavePort

¢

cembdD

Transport interfaces

= Three transport interfaces: Functional, Atomic, Timing
= All have their own transport functions on the ports
= sendFunctional(), sendAtomic(), sendTiming()

= Functional:
= Used for loading binaries, debugging, introspection, etc.
= Accesses happen instantaneously
= Reads get the “newest” copy of the data
= Writes update data everywhere in the memory system
= Completes a transaction in a single function call
= Requests complete before sendFunctional() returns
= Equivalent to TLM-2 debug transport
= QObijects that buffer packets must be queried and updated as well
¢

33 cembdD

Transport interfaces (cont’d)

= Atomic:
= Completes a transaction in a single function call
= Requests complete before sendAtomic() returns
Models state changes (cache fills, coherence, etc.)
= Returns approximate latency w/o contention or queuing delay
Similar to TLM-2 blocking transport (without wait)
Used for loosely-timed simulation (fast forwarding) or warming caches

= Timing:
= Models all timing/queuing in the memory system
= Split transaction into multiple phases
= sendTiming() initiates send of request to slave
= Slave later calls sendTiming() to send response packet
= Similar to TLM-2 non-blocking transport
= Used for approximately-timed simulation

= Atomic and Timing accesses can not coexist in system gs

34 cembdD

35

Statistics

= Wide variety of statistics available
= Scalar
= Average
= Vector
= Formula
= Histogram
= Distribution
= Vector Distribution

= Currently output text
= Soon to output Python dict

cembdD

36

Checkpointing & Fast forwarding

= Simulator can create checkpoints
= Restore from them at a later time
= Normally create checkpoint in atomic memory mode
= After reaching the ROI
= Restore from checkpoint and change the system to more detailed

= Constraints
= Qriginal simulation and test simulations must have
= Same ISA; number of cores; memory map
= \We don'’t currently checkpoint cache state
= Checkpoints should be created with Atomic CPU and no caches

¢

cembdD

RUNNING AN EXPERIMENT

cembdD

38

Running a Syscall Emulation Experiment

= Compiling a benchmark

= Running a benchmark in SE mode w/atomic CPU
= Running a benchmark with a detailed CPU

= Stats output

= |nstrumenting and creating a checkpoint

= Running from that checkpoint

cembdD

39

Compiling a benchmark for SE

= Do all these experiments with queens.c
= Very old benchmark, but it's easy to get and understand

[/work/gemb5] wget https://llvin.org/svn/llvm-project/test-suite/tags/
RELEASE_14/SingleSource/Benchmarks/McGill/queens.c

[/work/gemb5] arm-linux-gnueabi-gcc —-DUNIX -0 queens queens.c —static

= All binaries must be compiled with static flag

= |n principle you could run a dynamic linker, but no one has done the
work yet

¢

cembdD

Running Compiled Program

Command Line:

[/work/gem&5] ./build/ARM/gemb5.opt configs/example/se.py -c queens -o 16
gemb Simulator System. http://gemb.org

gemb5 is copyrighted software; use the --copyright option for details.

kaxxx REAL SIMULATION * * * *

info: Entering event queue @ O. Starting simulation...
16 queens on a 16x16 board...

Q _______________

__Q _____________

____Q ___________

-Q

____________ Q---

________ Q_______

"""""" QQ SE mode output is printed on the terminal
.............. Q-

_____ Q__________

_______________ Q

______ Q_________

___Q ____________

__________ Q_____

_______ Q________

_________ Q______

Exiting @ tick 33345000 because target called exit() 95

40 cembdD

Statistics Output

[/work/gem&] cat m5out/stats.txt

---------- Begin Simulation Statistics ----------

sim_seconds 0.002038
sim_ticks 2038122000
final_tick 2038122000
sim_freq 1000000000000
host_inst_rate 2581679
host_op_rate 2781442
system.physmem.bytes_read 17774713

system.physmem.bytes_written656551

system.cpu.numCycles

4076245
system.cpu.committedInsts _763927
system.cpu.committedOps 2977829

41

Number of seconds simulated

Number of ticks simulated

Number of ticks from beginning of simulation
Frequency of simnulated ticks

Simulator instruction rate (inst/s)

Simulator op (including micro ops) rate(op/s)

Number of bytes read from this memory
Number of bytes written to this memory

number of cpu cycles simulated

Number of instructions committed
Number of ops (including micro ops) committed

¢

cembdD

Running with caches and detailed CPU

[/work/gemB8] ./build/ARM/gemb.opt configs/example/se.py -¢c queens -o 16 --caches --12cache \
--Cpu-type=arm_detailed

16 queens on a 16x16 board...

Exiting @ tick 1686872500 because target called exit()

42 cembdD

43

Stats Output

[/work/gem&] cat m5out/stats.txt

---------- Begin Simulation Statistics ----------

sim_seconds 0.001687
sim_ticks 1686872500
final_tick 1686872500
sim_freq 1000000000000
host_inst_rate 103418
host_op_rate 111421
system.physmem.bytes_read 43968
system.physmem.bytes_written 0
system.cpu.numCQCycles 4076245
system.cpu.committedInsts 763927
system.cpu.committedOps 2977829

system.cpu.commit.branchMispredicts
system.cpu.cpi 1.220635

93499

Number of seconds simulated

Number of ticks simulated

Number of ticks from beginning of simulation
Frequency of simnulated ticks

Simulator instruction rate (inst/s)

Simulator op (including micro ops) rate(op/s)

Number of bytes read from this memory
Number of bytes written to this memory

number of cpu cycles simulated
Number of instructions committed
Number of ops (including micro ops) committed

The number of times a branch was mispredicted
CPI: Cycles Per Instruction

¢

cembdD

Check pointing at the Region of Interest

= Edit queens.c
= #include “util/m5/m5op.h”
= Contains various op codes that cause the simulator to take action
= Work happens in:

/* Find all solutions (begin recursion) */
mb5_checkpoint(0,0);

find(0);
if (level == queens) { /* Placed all queens? Stop. */
++golutions; /* Congrats, this is a solution! */

m5_dumpreset_stats(0,0);

= Recompile the binary when done:

[/work/gemb8] arm-linux-gnueabi-gcc ~-DUNIX -0 queens-w-chkpt queens.c \
util/m5/m5o0p_arm.S --static

¢

44 cembdD

Create a Checkpoint

Command Line:

[/work/gem&5] ./build/ARM/gemb5.opt configs/example/se.py -c queens -o 16
gemb Simulator System. http://gemb.org
gemb5 is copyrighted software; use the --copyright option for details.

*x %k x REAL SIMULATION * * * *

info: Entering event queue @ O. Starting simulation...
Writing checkpoint

info: Entering event queue @ 6805000. Starting simulation...

Exiting @ tick 2038122000because target called exit()

Directory:

[/work/gemb5] 1s m5out
config.ini config.json cpt.6805000 stats.txt

45

cembdD

Running from the checkpoint

Command Line:

[/work/gemB] ./build/ARM/gemb5.opt configs/example/se.py -¢ queens -o 16 --caches --12cache \
--cpu-type=arm_detailed --checkpoint-dir=m&out -r 1

Switch at curTick count: 10000

info: Entering event queue @ 6805000. Starting simulation...
Switched CPUS @ tick 6815000

Changing memory mode to timing

switching cpus

*xxk REAL SIMULATION * * * *

info: Entering event queue @ 6815000. Starting simulation...

Stats:

[/work/gem&] cat m5out/stats.txt
---------- Begin Simulation Statistics ----------

sim_seconds 0.001595

system.switch_cpus.cpi 1.191434 Stats within flnd(O);

---------- End Simulation Statistics ----------

---------- Begin Simulation Statistics ----------

sim_seconds 0.000064 St . g
ats for when printing happened

system.switch_cpus.cpi 1.662081 P g happ

B— End Simulation Statistics ---------- gs

46 cembdD

47

Running a Full System Experiment

= Mounting disk images and putting files on them

= Creating scripts that run an experiment

= Creating a checkpoint from within the simulation
= Running the experiment

= Using mbterm

= Running experiments from this checkpoint

cembdD

48

Mounting a Disk Image

= To mount a disk image you need to be root
= You can do it within a VM

= Mount command:
[/work/gem5] mount -o loop,offset=32256 linux-arm-ael.img /mnt

[/work/gemb5] 1s /mnt
bin boot dev etc home lib lost+found media mnt proc root sbin sys tmp usr var writable

[/work/gemb5] cp queens /mnt

[/work/gemb5] cp queens-w-chkpt /mnt

= Make sure you unmount before you use the image

[/work/gemb] umount /mnt

cembdD

Create a Boot Script

= Scripts are executed by startup scripts on images distributed
with gem5
= Files are read from *host* system after booting
= Written into simulated file system

= Executed like a shell script
configs/boot/queens.rcS:
#!/bin/sh

Wait for system to calm down
sleep 10

Take a checkpoint in 100000 ns
mb5 checkpoint 100000

Reset the stats
mb resetstats

Run queuens
/queens 16

Exit the simulation 5
mb exit g

49 cembdD

gem>S Terminal

= Default output from full-system simulation is on a UART
= mbterm is a terminal emulator that lets you connect to it

= Code is in src/util/term
= Run make in that directory and make install

= Binary takes two parameters
= /mbterm <host> <port>

= |f you're running it locally, use the loopback interface
= 127.0.0.1

= Port number is printed when gem5 starts
= Tries 3456 and increments until it find a free port

= So if you're running multiple copies on a single machine you might
find 3457, 3458, ...

¢

50 cembdD

Running in Full System Mode

Command Line:
[/work/gemb5] export LINUX_IMAGE=/tmp/linux-arm-ael.img

[/work/gemb5] ./build/ARM/gemb5.opt configs/example/fs.py --script=./configs/boot/queens.rcS
gemb Simulator System. http://gemb5.org

*x % x REAL SIMULATION * * * *
info: Entering event queue @ O. Starting simulation...

Writing checkpoint
info: Entering event queue @ 32358957649500. Starting simulation...
Exiting @ tick 32358957649500 because m5_exit instruction encountered

Terminal:
[/work/gemb5] ./util/term/m5term 127.0.0.1 3456

====1n5 slave terminal: Terminal O ====
[0.000000] Linux version 2.6.38.8-gemb5 (saidi@zeep) (gcc version 4.5.2 (Sourcery G++ Lite
[0.000000] CPU: ARMvV7 Processor [350fcO00] revision O (ARMv7), cr=10¢53c7f

init started: BusyBox v1.15.3 (2010-05-07 01:27:07 BST)
starting pid 331, tty ": '/etc/rc.d/rc.local’

warning: can't open /etc/mtab: No such file or directory
Thu Jan 1 00:00:02 UTC 1970

S: devpts

Thu Jan 1 00:00:02 UTC 1970

16 queens on a 16x16 board...

51

cembdD

52

Restoring from Checkpoint

Command Line:

[/work/gemB] ./build/ARM/gembB.opt configs/example/fs.py --caches --12cache \
--cpu-type=arm_detailed -r1l

Switch at curTick count:10000

info: Entering event queue @ 32344924619000. Starting simulation...
Switched CPUS @ tick 32344924619000

Changing memory mode to timing

switching cpus

*xkx REAL SIMULATION * * * *

info: Entering event queue @ 32344924629000. Starting simulation...

Exiting @ tick 32394507487500 because m5_exit instruction encountered

Terminal:

[/work/gemb5] ./util/term/m5term 127.0.0.1 3456
====mb5 slave terminal: Terminal O ====

16 queens on a 16x16 board...

cembdD

What output is generated?

= Files describing the configuration

= config.ini — ini formatted file that has all the objects and their
parameters

= config.json — json formatted file which is easy to parse for input into
other simulators (e.g. power)

= Statistics
= stats.txt — You've seen several examples of this

= Checkpoints

= cpt.<cycle number> -- Each checkpoint has a cycle number. The —r N
parameter restores the Nth checkpoint in the directory

= Output
= *terminal — Serial port output from the simulation
= frames_<system> — Framebuffer output

¢

53 cembdD

DEBUGGING

cembdD

55

Debugging Facilities

= Tracing
= |nstruction tracing
= Diffing traces

= Using gdb to debug gem5
= Debugging C++ and gdb-callable functions
= Remote debugging

= Pipeline viewer

cembdD

56

Tracing/Debugging

= printf() is a nice debugging tool
= Keep good print statements in code and selectively enable them

= Lots of debug output can be a very good thing when a problem arises
Use DPRINTF's in code
DPRINTF(TLB, "Inserting entry into TLB with pfn:%#x...)

= Example flags:
= Fetch, Decode, Ethernet, Exec, TLB, DMA, Bus, Cache, O3CPUAIlL
= Print out all flags with —-debug-help

= Enabled on the command line
= --debug-flags=Exec
= --trace-start=30000
= --trace-file=my_trace.out
= Enable the flag Exec; start at tick 30000; Write to my_trace.out 95

cembdD

57

Sample Run with Debugging

Command Line:

22:44:28 [/work/gem$5] ./build/ARM/gemS5.opt --debug-flags=Decode--trace-start=50000 --trace-
file=my_trace.out configs/example/se.py -c tests/test-progs/hello/bin/arm/linux/hello

**** REAT, SIMULATION * * * *

info: Entering event queue @ O. Starting simulation...
Hello world!
hack: be nice to actually delete the event here

Exiting @ tick 3107500 because target called exit()

my_trace.out:

2:44:47 [/work/gem&] head m5out/my_trace.out

50000:
50800:
51000:
51500:
52000:
5:500:
53000:
853500:
54000:
54500:

system.cpu:
system.cpu:
system.cpu:
system.cpu:
system.cpu:
system.cpu:
system.cpu:
system.cpu:
system.cpu:
system.cpu:

Decode:
Decode:
Decode:
Decode:
Decode:
Decode:
Decode:
Decode:
Decode:
Decode:

Decoded cmps instruction:
Decoded ldr instruction:
Decoded ldr instruction:
Decoded 1dr instruction:

Decoded addi_uop instruction:

Decoded cmps instruction:
Decoded b instruction:
Decoded sub instruction:
Decoded cmps instruction:
Decoded ldr instruction:

0Oxe353001e
Ox979ff103
0xe5107004
0xe4903008
0xe4903008
0xe38530000
Ox1affff84
0xe433003
0xed353001e
Ox979ff103

¢

cembdD

Adding Your Own Flag

= Print statements put in source code

= Encourage you to add ones to your models or contribute ones you
find particularly useful

= Macros remove them from the gemS&.fast binary
= There is no performance penalty for adding them
= To enable them you need to run gemS.opt or gemS.debug

= Adding one with an existing flag
= DPRINTF(<flag>, “normal printf %s\n”, “arguments”);

= To add a new flag add the following in a Sconscript
= DebugFlag(‘MyNewFlag’)

= Include corresponding header, e.g. #include “debug/ gs
MYNGWF].&g.hh” cembd

58

59

Instruction Tracing

= Separate from the general debug/trace facility
= But both are enabled the same way

= Per-instruction records populated as instruction executes
= Start with PC and mnemonic
= Add argument and result values as they become known

= Printed to trace when instruction completes
= Flags for printing cycle, symbolic addresses, etc.

2:44:47 [/work/gemb] head m5out/my_trace.out

50000: TO:0x14468 : cmps r3, #30 : IntAlu : D=0x00000000

50500: TO : Ox1446¢c : 1drls pc, [pc, r3 LSL #2] : MemRead : D=0x00014640 A=0x144¢
51000: TO : 0x14640 : 1dr r7, [rO, #4] :MemRead: D=0x00001000 A=0xbeffffOc
51500: TO : 0x14644.0 : 1dr r3, [rO] #8 : MemRead : D=0x00000011 A=0Oxbefff
52000: TO:0x14644.1 : addi_uop rO,roO, #8 : IntAlu : D=0OxDbeffff18

52500: TO:0x14648 : cmps r3, #0 : IntAlu : D=0x00000001

B3000: TO:0x1464c . bne . IntAlu ; gs

cembdD

60

Using GDB with gem5

= Several gem5 functions are designed to be called from GDB
= schedBreakCycle() — also with --debug-break
= setDebugFlag()/clearDebugFlag()
= dumpDebugStatus()
= eventqDump()
= SimObject::find()
= takeCheckpoint()

cembdD

Using GDB with gem5

2:44:47 [/work/gems] gdb --args ./build/ARM/gemb5.opt configs/example/fs.py
GNU gdb Fedora (6.8-37.e15)

(gdb) b main
Breakpoint 1 at 0x40900Db0: file build/ARM/sim/main.cc, line 40.
(gdb) run

Breakpoint 1, main (arge=2, argv=0x7fffa59725f8) at build/ARM/sim/main.cc
main(int arge, char * *argv)

(gdb) call schedBreakCycle(1000000)
(gdb) continue
Continuing.

gemo Simulator System

O: system.remote_gdb.listener: listening for remote gdb #0 on port 7000

kHxx REAL SIMULATION * * * *

info: Entering event queue @ O. Starting simulation...

Program received signal SIGTRAP, Trace/breakpoint trap.
0x00000038ccb630617 in kill () from /1ib64/libc.s0.6 95

cembdD

Using GDB with gem5

(gdb) p _curTick
$1 = 1000000

(gdb) call setDebugFlag("Exec")

(gdb) call schedBreakCycle(1001000)
(gdb) continue

Continuing.

1000000: system.cpu TO : @_stext+148. 1 : addi_uop rO, rO, #4 : IntAlu : D=0x000

1000500: system.cpu TO : @_stext+152 : teqs rO, r6 : IntAlu : D=0x00000000

Program received signal SIGTRAP, Trace/breakpoint trap.
0x0000008ccbB630617 in kill () from /1ib64/libc.s0.6

(8db) print SimObject::find("system.cpu")

$2 = (SimObject *) 0x19¢cbal30

(gdb) print (BaseCPU *)SimObject::find("system.cpu")
$3 = (BaseCPU *) 0x19¢cbal30

(gdb) p $3->instCnt

$4 =431 95

62 cembdD

Diffing Traces

= Often useful to compare traces from two simulations
= Find where known good and modified simulators diverge

= Standard diff only works on files (not pipes)

= _..but you really don’t want to run the simulation to completion first

= util/rundiff
= Perl script for diffing two pipes on the fly

= util/tracediff

= Handy wrapper for using rundiff to compare gem5 outputs
= tracediff “a/gem5.opt|b/gemb.opt” —~debug-flags=Exec
= Compares instructions traces from two builds of gem5
= See comments for details 5
€

63 cembdD

Advanced Trace Diffing

= Sometimes if you run into a nasty bug it's hard to compare
apples-to-apples traces

= Different cycles counts, different code paths from interrupts/timers

= Some mechanisms that can help:

= -ExecTicks don't print out ticks

= -ExecKernel don’t print out kernel code

= -ExecUser don'’t print out user code

= ExecAsid print out ASID of currently running process

= State trace

= PTRACE program that runs binary on real system and compares
cycle-by-cycle to gemb

= Supports ARM, x86, SPARC
= See wiki for more information gs

64 cembdD

65

Checker CPU

= Runs a complex CPU model such as the O3 model in tandem
with a special Atomic CPU model

= Checker re-executes and compares architectural state for
each instruction executed by complex model at commit

= Used to help determine where a complex model begins
executing instructions incorrectly in complex code

= Checker cannot be used to debug MP or SMT systems
= Checker cannot verify proper handling of interrupts
= Certain instructions must be marked unverifiable i.e. “wfi’

¢

cembdD

66

Remote Debugging

/build/ARM/gemb5.opt configs/example/fs.py
gemb5 Simulator System

command line: ./build/ARM/gem5.opt configs/example/fs.py

Global frequency set at 1000000000000 ticks per second

info: kernel located at: /dist/binaries/vmlinux.arm

Listening for system connection on port 5900

Listening for system connection on port 3456

O: system.remote_gdb.listener: listening for remote gdb #0 on port 7000
info: Entering event queue @ O. Starting simulation...

cembdD

67

Remote Debugging

GNU gdb (Sourcery G++ Lite 2010.09-50) 7.2.50.20100908-cvs Copyright (C)
2010 Free Software Foundation, Inc.

(gdb) symbol-file /dist/binaries/vmlinux.arm

Reading symbols from /dist/binaries/vmlinux.arm...done.
(gdb) set remote Z-packet on

(gdb) set tdesc filename arm-with-neon.xml

(gdb) target remote 127.0.0.1:7000

Remote debugging using 127.0.0.1:7000

cache_init_objs (cachep=0xc7c00240, flags=3351249472) at mm/slab.c:2658
(gdb) step

sighand_ctor (data=0xc7ead060) at kernel/fork.c:1467
(gdb) info registers

rO Oxc7ead060 -940912544

rl Ox5201312

re 0xc002fle4 -1073548828

r3 0xc7ead060 -940912544

r4 0x00

r5 0xc7ead020 -940912608

cembdD

Python Debugging

= |t is possible to drop into the python interpreter (-1 flag)
= This currently happens after the script file is run

= |f you want to do this before objects are instantiated, remove
them from script
= |tis possible to drop into the python debugger (--pdb flag)
= Qccurs just before your script is invoked
= |ets you use the debugger to debug your script code

= Code that enables this stuff is in src/python/mb&/main.py
= At the bottom of the main function

= Can copy the mechanism directly into your scripts, if in the wrong
place for you needs

= import pdb
= pdb.set_trace()

68 cembdD

O3 Pipeline Viewer

Use --debug-flags=03PipeView and util/o3-pipeview.py

===y =

Thanks for flying Vim

less

162x44

4260000) 6x120087bf4.
450008) Bx120087bfS.
426008) 6x120087bfc.
520000) 6x120067c60 .
520000) Bx120067c04 .
520008) 6x120067c63.
520000) 6x120087chc.

520000) Bx120067c48

520000) 6x120087c44.
520000) Bx120067c48.
526008) 6x120087c54.
526008) 6x120067c58.
520060) @x120067cSc.
526008) 6x120087bf4.
520008) 6x120087bf3.
520000) @x120087bfc.
526008) 6x120087cd4c.
520000) 6x120067c50.
520000) @x120067c54.
526008) 6x120087c58.
526008) 6x120087c5c.
520000) @x120067bf4.
526008) 6x120087bfS.
520000) 6x120087bfc.
526008) 6x120087c60 .
520008) 6x120087c84 .
520000) 6x120087c14.
526008) 6x120087c18.
526008) 6x120087cic.
520000) 6x120067c20.
520000) Bx120067c24.
526008) 6x120087c54.
520000) 6x120087c58.
526008) 6x120087c5c.
566008) 6x120087bf4.
560060) Bx120087bS.
566008) @x120087bfc.
5660008) 6x120067c60 .
560060) Bx120067c04 .
566008) 6x120087c14.
566008) 6x120067c18.
560060) @x120887cic.
566008) 6x120087c20.

OO0 D

ldq r2,8{r16)
cmpeq r2,5,r1

bne r1,8x128887c4c
cmple r2,5,r1

beq r1,8x128887c14
cmpeq r2,3,r1

bne r1,8x120067c48
ldq r1,8{r16)

stq r1,8{r4)

br B8x128087

lda r16,16{r16)
ldq r1,8{r16)

bre r1,8x120887bf4
ldq r2,8{r16)
cmpeq r2,5,r1

brne ri1,8x128887c4c
ldq r1,8{r16)

stq r1,8{r3)

lda r16,16{r16}
ldq r1,8{r16)

bne ri,8x126067bf4
ldq r2,8{r16)
cmpeq r2,5,r1

bne ri,8x128087c4c
cmple r2,5,r1

beq r1,8x120067c14
cmpeq r2,6,r1

bne ri,8x120087c28
cmpeq r2,17,r1

bne ri,8x120087c34
br B8x128067c54

lda r16,16{r16)
ldq r1,8{r16)

bne r1,8x1280887bf4
ldq r2,8{r16)
cmpeq r2,5,r1

brne r1,8x128887c4c
cmple r2,5,r1

beq r1,8x128887c14
cmpeq r2,6,r1

bne r1,8x128087c28
cmpeq r2,17,r1

bne r1,8x1280887c34

MEMORY SYSTEM

cembdD

Goals

= Model a system with heterogeneous applications, running on
a set of heterogeneous processing engines, using
heterogeneous memories and interconnect

= CPU centric: capture memory system behaviour accurate enough

= Memory centric: Investigate memory subsystem and interconnect
architectures

Video Video
backend decoder

gem5

Goals, contd.

= Two worlds...
= Computation-centric simulation
= e.g. SimpleScalar, Simics, Asim etc

= More behaviourally oriented, with ad-hoc ways of describing
parallel behaviours and intercommunication

= Communication-centric simulation

= e.g. SystemC+TLM2 (IEEE standard)

= More structurally oriented, with parallelism and interoperability as
a key component

= _..gem> striking a balance
= Easy to extend (flexible)
= Easy to understand (well defined)
= Fast enough (to run full-system simulation at MIPS)
= Accurate enough (to draw the right conclusions) 95

72 cembdD

Ports, Masters and Slaves

= MemObijects are connected through master and slave ports

= A master module has at least one master port, a slave
module at least one slave port, and an interconnect module
at least one of each
= A master port always connects to a slave port
= Similar to TLM-2 notation

Master Slave module
module Interconnect
\ / module

Master port — Slave port — gs

73 cembdD

Requests & Packets

= Protocol stack based on Requests and Packets
= Uniform across all MemOQObijects (with the exception of Ruby)
= Aimed at modelling general memory-mapped interconnects

= A master module, e.g. a CPU, changes the state of a slave module,
e.g. a memory through a Request transported between master ports

and slave ports using Packets

Request req(addr, size, flags, masterld);
Packet* req_pkt = new Packet(req, MemCmd::ReadReq);

>
if (req_pkt->needsResponse()) {

req_pkt->makeResponse();
} else {
delete req_pkt;

}

<

delete resp_pkt; 5

cembdD

74

Requests & Packets

= Requests contain information persistent throughout a
transaction
= Virtual/physical addresses, size
= MasterID uniquely identifying the module behind the request
= Stats/debug info: PC, CPU, and thread ID

= Requests are transported as Packets
= Command (ReadReq, WriteReq, ReadResp, etc.) (MemCmd)
= Address/size (may differ from request, e.g., block aligned cache miss)
= Pointer to request and pointer to data (if any)
= Source & destination port identifiers (relative to interconnect)
= Used for routing responses back to the master
= Always follow the same path
= SenderState opaque pointer
= Enables adding arbitrary information along packet path gs

75 cembdD

Functional transport interface

= On a master port we send a request packet using sendFunctional
= This in turn calls recvFunctional on the connected slave port
= For a specific slave port we implement the desired functionality by
overloading recvFunctional
= Typically check internal (packet) buffers against request packet
= For a slave module, turn the request into a response (without altering state)

= For an interconnect module, forward the request through the appropriate
master port using sendFunctional

= Potentially after performing snoops by issuing sendFunctionalSnoop

masterPort.sendFunctional(pkt); > MySlavePort::recvFunctional(PacketPtr pkt)
Il packet is now a response {

¢

76 cembdD

Atomic transport interface

= On a master port we send a request packet using sendAtomic

= This in turn calls recvAtomic on the connected slave port

= For a specific slave port we implement the desired functionality by
overloading recvAtomic

= For a slave module, perform any state updates and turn the request into a
response

= For an interconnect module, perform any state updates and forward the
request through the appropriate master port using sendAtomic

= Potentially after performing snoops by issuing sendAtomicSnoop

= Return an approximate latency

Tick latency = masterPort.sendAtomic(pkt); ———> MySlavePort::recvAtomic(PacketPtr pkt)
Il packet is now a response {

return latency;

}

77 cembdD

Timing transport interface

= On a master port we try to send a request packet using sendTiming
= This in turn calls recvTiming on the connected slave port

= For a specific slave port we implement the desired functionality by
overloading recvTiming
= Perform state updates and potentially forward request packet
= For a slave module, typically schedule an action to send a response at a later time
= A slave port can choose not to accept a request packet by returning false
= The slave port later has to call sendRetry to alert the master port to try again

bool success = masterPort.sendTiming(pkt); ————> MySlavePort::recvTiming(PacketPtr pkt)
if (success) { {

Il request packet is sent assert(pkt->isRequest());
} else { return true/false;

Il failed, will get }

I retry from slave port

78 cembdD

Timing transport interface (cont’d)

= Responses follow a symmetric pattern in the opposite direction
= On a slave port we try to send a response packet using sendTiming
= This in turn calls recvTiming on the connected master port

= For a specific master port we implement the desired functionality by
overloading recvTiming
= Perform state updates and potentially forward response packet
= For a master module, typically schedule a succeeding request

= A master port can choose not to accept a response packet by returning
false
= The master port later has to call sendRetry to alert the slave port to try again

MyMasterPort::recvTiming(PacketPtr pkt) €« bool success = slavePort.sendTiming(pkt);
{ if (success) {

assert(pkt->isResponse()); Il response packet is sent

return true/false; }else{..

}

¢

79 cembdD

Ruby for Networks and Coherence

= As an alternative to the conventional memory system gem5b
also integrates Ruby

= Create networked interconnects based on domain-specific
language (SLICC) for coherence protocols

= Detailed statistics
= e.g., Request size/type distribution, state transition frequencies, etc...

= Detailed component simulation
= Network (fixed/flexible pipeline and simple)
= Caches (Pluggable replacement policies)

= Runs with Alpha and X86

= Limited support for functional accesses

80 cembdD

Caches

= Single cache model with several components:
= Cache: request processing, miss handling, coherence
= Tags: data storage and replacement (LRU, IIC, etc.)
= Prefetcher: N-Block Ahead, Tagged Prefetching, Stride Prefetching
= MSHR & MSHRQueue: track pending/outstanding requests
= Also used for write buffer

= Parameters: size, hit latency, block size, associativity, number of
MSHRs (max outstanding requests)

81 cembdD

82

Coherence protocol
= MOESI bus-based snooping protocol

= Support nearly arbitrary multi-level hierarchies at the expense of
some realism

= Does not enforce inclusion

= Magic “express snoops” propagate upward in zero time
= Avoid complex race conditions when snoops get delayed
= Timing is similar to some real-world configurations
= | 2 keeps copies of all L1 tags
= L2 and L1s snooped in parallel

cembdD

Buses & Bridges

= Create rich system interconnect topologies using a simple
bus model and bus bridge
= Buses do address decoding and arbitration
= Distributes snoops and aggregates snoop responses

= Routes responses
= Configurable width and clock speed

= Bridges connects two buses
= Queues requests and forwards them
= Configurable amount of queuing space for requests and responses

¢

83 cembdD

84

Memory

= All memories in the system inherit from AbstractMemory
= Encapsulates basic “memory behaviour”:
= Has an address range with a start and size
= Can perform a zero-time functional access and normal access

= SimpleMemory is currently the only subclass
= Multi-port memory controller
= Fixed-latency memory (possibly with a variance)
= [nfinite throughput

cembdD

Work in progress
= 4-phase handshakes like TLM-2

= Begin/end request/response
= Enable straight forward modeling of contention and arbitration
= Add associated library of general arbiters for shared buses and
memory controllers
= Communication monitor
= |nsert as a structural component where stats are desired

= Captures a wide range of communication stats: bandwidth, latency,
inter-transaction time, outstanding transactions etc

= Can be found on the review board

= Traffic generators
= |nject requests based on probabilistic state-transition diagrams

= Black-box IP models or “predictable” scenarios for memory system
testing and performance validation gs

cembdD

85

86

Instantiating and Connecting Objects

class BaseCPU(MemObject):
icache_port = MasterPort("Instruction Port")
dcache_port = MasterPort("Data Port")

class BaseCache(MemObject):
cpu_side = SlavePort("Port on side closer to CPU")
mem_side = MasterPort("Port on side closer to MEM")

class Bus(MemObject):
slave = VectorSlavePort("vector port for connecting masters")
master = VectorMasterPort("vector port for connecting slaves")

system.cpu.icache_port = system.icache.cpu_side

system.cpu.dcache_port = system.dcache.cpu_side

system.icache.mem_side = system.l2bus.slave
system.dcache.mem_side = system.l2bus.slave

cembdD

CPU MODELS

cembdD

CPU Models — System Level View

= CPU Models are design to be “hot pluggable” with arbitrary
ISA and memory systems

CPU Memory
Decoder AtomicSimpleCPU)
Classic
TLB TimingSimpleCPU
Faults InOrder CPU Ruby
Interrupts 03 CPU

88 cembdD

89

Simple CPU Models (1)

= Models Single-Thread 1 CPI Machine
= Two Types:

= AtomicSimpleCPU

= TimingSimpleCPU
= Common Uses:

= Fast, Functional Simulation

= 2.9 million and 1.2 million instructions per second on the twolf
benchmark

= Warming Up Caches
= Studies that do not require detailed CPU modeling

cembdD

Atomic Simple CPU

= On every CPU tick() perform Cycle |
all operations for an 0 |tick) [sendAtomic)
iInstruction

' sendAtomic()

= Memory accesses use
atomic methods

= Fastest functional simulation

1 sendAtomic(

src/cpu/simple/atomic/*

¢?

) cembdD

Timing Simple CPU

= Memory accesses use timing Cycle

path 0 ; sendTiminﬂ()

Fetch Delay

= CPU waits until memory
access returns

recvTming()

Ce
] sendTiming()
= Fast, provides some level of —
timin
9 LD/ST Delay
C,+ T

o o — — o =

sendTiminﬂ()

src/cpu/simple/timing/*
cembdD

Detailed CPU Models

= Parameterizable Pipeline Models w/SMT support

= Two Types

= |nOrderCPU
= O3CPU

= “Execute in Execute”, detailed modeling
= Roughly an order-of-magnitude slower
= ~200K instructions per second on twolf
= Models the timing for each pipeline stage
= Forces both timing and execution of simulation to be accurate
= |Important for Coherence, I/O, Multiprocessor Studies, etc
= Both only support some architecutres
= See Status Matrix on gem5.org for up-to-date info

92 cembdD

InOrder CPU Model

. . Cycl InOrderCPU
= Default 5-stage pipeline y°0°’ e
F
= Fetch, Decode, Execute, Memory, Writeback ----f----- e
| 7 IS
= Key Resources ‘ ---------
= Cache, Execution, BranchPredictor, etc. ! W L
= Pipeline stages 3| -M ______
o [f w
5 F [L- W

= Pipeline stages interact with Resource Pool

= Pipeline defined through Instruction Schedules

= Each instruction type defines what resources they need in a particular
stage

= |f an instruction can’t complete all it's resource requests in one stage,
it blocks the pipeline

03 cembdD

94

Out-of-Order (O3) CPU Model

= Default 7-stage pipeline
= Fetch, Decode, Rename, Issue, Execute, Writeback, Commit
= Model varying amount of stages by changing the delay between them
= For example: fetchToDecodeDelay
= Key Resources
= Physical Registers, I1Q, LSQ, ROB, Functional Units

cembdD

95

ThreadContexts

= |nterface for accessing total architectural state of a single
thread

= PC, register values, etc.

= Used to obtain pointers to key classes
= CPU, process, system, ITB, DTB, etc.

= Abstract base class
= Each CPU model must implement its own derived ThreadContext

¢

cembdD

96

Instruction Decoding

‘ Memory
Byte Byte Byte Byte Byte Byte Byte Byte
I I I I I I I |
v
Predecoder <— Context

v

ExtMachinelnst

v

Decoder

v

Staticlnst

v

Macro-op

cembdD

97

Staticinst

= Represents a decoded instruction
= Has classifications of the inst
= Corresponds to the binary machine inst
= Only has static information

= Has all the methods needed to execute an instruction
= Tells which regs are source and dest
= Contains the execute() function
= |SA parser generates execute() for all insts

cembdD

98

Dyninst

= Dynamic version of Staticlnst
= Used to hold extra information detailed CPU models
= BaseDynlInst
= Holds PC, Results, Branch Prediction Status
= Interface for TLB translations

= Specialized versions for detailed CPU models

cembdD

99

ISA Description Language

= Custom domain-specific language
= Defines decoding & behavior of ISA

= Generates C++ code
= Scads of Staticlnst subclasses
= decodelnst() function
= Maps machine instruction to Staticlnst instance
= Multiple scads of execute() methods
= Cross-product of CPU models and Staticlnst subclasses

cembdD

COMMON TASKS

cembdD

101

Common Tasks

= Adding a statistic
= Parameters and SimObject
= Creating an SimQObject

= Configuration
= |nitialization
= Serialization
= Events

= |nstrumenting a benchmark

cembdD

Adding a statistic

= Add a statistic to the atomic CPU model

= Track number of instruction committed in user mode
= Number of statistics classes in gemb
= Scalar, Average, Vector, Formula, Histogram, Distribution, Vector Dist

= \We'll choose a Scalar and a Formula
= Count number of instructions in user mode
= Formula to print percentage out of total

102 cembdD

Add Stats to src/cpu/simple/base.hh

« Controls registering the statistics when the

// statistics simulation starts.
virtual void regStats(); « All stats must be registered in regStats() as they
virtual void resetStats(); can’t be dynamically added during the running
simulation.

// number of simulated instructiohs resetStats() is called when the stats are zerod; You
normally don’t need to do anything for this.

Stats::Scalar numlInsts;

Stats::Scalar numOps;

« numbUserinsts will contain count of
Stats::Scalar numUserInsts; instructions executed in user mode

Stats::Formula percentUserInsts; « percentUserlnsts will be numUserinsts/
numinsts

¢

103 cembdD

Add Stats to src/cpu/simple/base.cc

numlInsts
Jname(name() +".committedInsts")
.desc("Number of instructions committed")

9

numUserInsts

name(name() + ".committedUserInsts")
.desc("Number of instructions committed”
“while in use code”)

» Give the stats we created in the
header file a name and a
description

« Other stat types (e.g. vector)
need a length here

9

percentUserInsts
name(name() + ”.percentUserInsts")
.desc(”Percent of total of instructions”
“ committed while in use code”)

I

idleFraction = constant(1.0) - notIdleFraction; * Formulas will be evaluated
percentUserInsts = numUserInsts/numInsts; when statistics are output

¢

104 cembdD

Accumulate numUserinsts

void countInst()

{

if (lecurStaticInst->isMicroop() || curStaticInst->isLastMicroop()) {
numlInst++;
numlInsts++;
if (TheISA::inUserMode(tc))
numUserInsts++;

105 cembdD

Look at the results

Command Line:
[/work/gemb&] ./build/ARM/gemb5.opt configs/example/fs.py --script=./configs/boot/halt.rcS

gemb Simulator System. http://gemb5.org

*xdk REAL SIMULATION * * * *
info: Entering event queue @ O. Starting simulation...

Exiting @ tick 332316587000because m5_exit instruction encountered

Stats:

[/work/gemb5] grep Insts m5out/stats.txt

system.cpu.committedInsts 59262896 # Number of instructions committed

system.cpu.committedUserIlnsts 6426560 # Number of instructions committed while in
user code

system.cpu.percentUserlnsts 0.108442 # Percent of instructions committed while in
user code

¢

106 cembdD

Parameters and SimObjects

= Parameters to SimObjects are synthesized from Python
structures that represent them

= This example is from src/dev/arm/Realview.py

¥ Python class name

class P1011(Uart)¥ Python base class
type = 'P1011" €&C++ class
gic = Param.Gic(Parent.any, "Gic to use for interrupting")
int_num = Param.UInt32("Interrupt number that connects to GIC")
end_on_eot = Param.Bool(False, "End the simulation when a EOT is received")
int_delay = Param.Latency("100ns", "T'ime between action and interrupt generation")

Parameter type A A Parameter default A\ Parameter Description
A Parameter name

¢?

107 cembdD

Auto-generated Header file

#ifndef PARAMS PIO11
#define _ PARAMS_ PIO11

class P1011,;

#include <cstddef>
#include "base/types.hh”
#include "params/Gic.hh"
##include "base/types.hh"

#include "params/Uart.hh"

struct P1011Params
: public UartParams

{ class P1011(Uart):
P1011 * create(); type = 'P1011"
ui.IltSZ._t int_num,; \gic = Param.Gic(Parent.any, ...)
Gic * gic; €— int_num = Param.UInt32(...)
bool end_on_eot;< end_on_eot = Param.Bool(False, "End ...)

Tick int_delay; €—

1
#endif // _ PARAMS_ PIO11__ 95

int_delay = Param.Latency("100ns", "Time ...")

108 cembdD

How Parameters are used in C++

src/dev/arm/pl011.cc:

P1011::P1011(const P1011Params *p)
: Uart(p), control(0x300), ford(0), ibrd(0), lerh(0), ifls(0x12), imsc(0),
rawInt(0), maskInt(0), intNum(p->int_num), gic(p->gic),
endOnEQOT(p->end_on_eot), intDelay(p->int_delay), intEvent(this)

{
pioSize = OXffT;
}

You can also access parameters through params() accessor on SimObject
incase you have parameters that aren’t stored in a SimObiject directly.

¢

109 cembdD

Creating a SimObject

= Derive Python class from Python SimObject

= Defines parameters, ports and configuration
= Parameters in Python are automatically turned into C++ struct and
passed to C++ object
= Add Python file to SConscript
= Or, place it in an existing SConscript

= Derive C++ class from C++ SimObject
= Defines the simulation behavior

= See src/sim/sim_object.{cc,hh}
= Add C++ filename to SConscript in directory of new object
= Need to make sure you have a create function for the object

= ook at the bottom of an existing object for info

= Recompile
¢

cembdD

110

SimObject Initialization

= SimObjects go through a sequence of initialization

1. C++ object construction

= Other SimObjects in the system may not be constructed yet
2. SimObject::init()

= (Called on every object before the first simulated cycle

= Useful place to put initialization that requires other SimObjects

3. SimObiject::initState()
= (Called on every SimObject when not restoring from a checkpoint

4. SimObiject::loadState()

= Called on every SimObject when restoring from a checkpoint
= By default the implementation calls SimObiject::unserialize()

¢

cembdD

Creating/Using Events

= One of the most common things in an event driven simulator
Is scheduling events

= Declaring events and handlers is easy:

/** Handle when a timer event occurs */
void timerHappened();
EventWrapper<ClassName, &ClassName::timerHappend> timerEvent;

= Scheduling them is easy too:

/** something that requires me to schedule an event at time t**/
if (timerEvent.scheduled())

timerEvent.reschedule(curTick() + t);
else

timerEvent.schedule(curTick() + t);

112 cembdD

Checkpointing SimObject State

= |f you have state that needs to be saved when a checkpoint is
created you need to serialize or marshal that data

= When a checkpoint happens SimObject::drain() is called
= QObjects need to return if they’re OK to drain or not
= Should always be OK in atomic mode

= |n timing mode you stop issuing transactions and complete
outstanding

= \WWhen every object is ok to checkpoint SimObject::serialize()
= Save necessary state (not parameters you get from config system)
= SERIALIZE_ *() macros help

= To restore the state SimObject::loadState() is called

= This calls SimObject::unserialize() by default
= UNSERIALIZE_*() macros

¢

113 cembdD

Checkpointing Timers and Objects

= Checkpointing events, objects are slightly more difficult

= To checkpoint an object you can use (UN)SERIALIZE OBJPTR()
= Save object name

= To save an event you need to check if it's scheduled

bool is_in_event = timerEvent.scheduled();
SERIALIZE_SCALAR(is_in_event);

Tick event_time;
if (is_in_event){
event_time = timerEvent.when();
SERIALIZE_SCALAR(event_time);
}

114

cembdD

Instrumenting a Benchmark

= You can add instructions that tell simulator to take action
iInside the binary

= \We went through some examples with checkpointing and stats reset

= Other options are

115

mS_initparam() — get integer passed on command line —initparam=
mS_reset_stats(initial_delay, repeat) — reset the stats to O
mS_dump_stats(initial_delay, repeat) — dump stats to text file
mbS_work _begin(work_id, thread_id) -- begin a item sample
mbS_work _end (work_id, thread _id) -- end a item sample

= Average time complete work_ids will be printed in stats file

¢

cembdD

CONFIGURATION

cembdD

Simulator Configuration

= Config files that come with gem5 are meant to be examples

= Certainly not meant to expose every parameter you would want to
change

= Configuration files are Python

= You can programmatically create objects
= Put them into a hierarchy

= gembd will instantiate all the Python SimObjects you create and attach
them together

= Good news is you can do anything you want for configuration
= Possibly also bad news

¢

17 cembdD

SimObject Parameters

= Parameters can be
= Scalars — Param.Unsigned(5), Param.Float(5.0)
= Arrays -- VectorParam.Unsigned([1,1,2,3])
= SimObjects — Param.PhysicalMemory(...)
= Arrays of SimObjects — VectorParam.PhysicalMemory(Parent.any)
= Range — Param.Range(AddrRange(0,Addr.max))
= Some are converted from strings:
= Latency — Param.Latency(’15ns’)
= Frequency — Param.Frequency(‘100MHZ’)

= Others are converted to bytes
= MemorySize — Param.MemorySize(‘1GB’)
= Few more complex types:

= Time — Param.Time(‘Mon Mar 25 09:00:00 CST 2012’)
= Ethernet Address — Param.EthernetAddr(“90:00:AC:42:45:00")

¢

118 cembdD

A Simple Example

import mb5
from mb5.objects import *

class MyCache(BaseCache):
assoc =2
block_size = 64
latency ='1lns'
mshrs = 10
tgts_per_mshr=95

class MyL1Cache(MyCache):
is_top_level = True

cpu = TimingSimpleCPU(cpu_id=0)

cpu.addTwoLevelCacheHierarchy(MyL1lCache(size = '128kB"),
MyL1Cache(size = '256kB"),
MyCache(size = '2MB', latency='10ns"))

system = System(cpu = cpu,
physmem =SimpleMemory(),
membus = Bus())

119

cembdD

120

A Simple Example Part 2

root.system.cpu.workload = LiveProcess(cmd = 'hello’, executable = binpath('hello"))

system.system_port = system.membus.slave
system.physmem.port = system.membus.master

create the interrupt controller
cpu.createInterruptController()
cpu.connectAllPorts(system.membus)
cpu.clock ='2GHZ'

root = Root(full_system=False, system = system)

instantiate configuration
mb5.instantiate()

simulate until program terminates
exit_event = m5.simulate(mn5.MaxTick)

cembdD

Two Classes of Configuration

= Python files in the src directory are “built” into the executable

= |f you change one of these you need to recompile
= Or, set the M5 OVERRIDE PY_ SOURCE env variable to True

= Other python files aren’t built into the binary

= They can be changed and no recompiling is needed

121 cembdD

CONCLUSION

cembdD

Summary

= Basics of using gem5
= High-level features
= Running simulations
= Debugging them

= Under the hood
= Memory system
= CPU Models

= Common Tasks
= Adding a statistics
= SimQObject Parameters
= Creating a SimObject
= |nstrumenting a Benchmark

123 cembdD

Keep in Touch

= Please check out the website:
= Subscribe to the mailing lists
= gemb-users — Questions about using/running gems
= gemb-dev — Questions about modifying the simulator
= Submit a patch to our ReviewBoard
= http://reviews.gemb.org
= Read & Contribute to the wiki
= http://www.gem5.org

= We hope you found this tutorial and will find gem5 useful

= We'd love to work with you to make gemb more useful to the
community

= Thank you gs

124 cembdD

